CATALOGO TECNICO

MOTOVARIATORI

STANDARD IEC

1. IN	NFORMAZIONI GENERALI	
1.1	COMPANY PROFILE	6
1.2	PRODOTTI E SOFTWARE MOTOVARIO	
1.3 1.3.1 1.3.2	SIMBOLOGIA E FORMULE Simbologia Formule	12
1.4	SELEZIONE DEL PRODOTTO	14
1.5	FATTORE DI SERVIZIO	15
1.6	INSTALLAZIONE	16
2. IN	NFORMAZIONI DI PRODOTTO	
2.1	CARATTERISTICHE COSTRUTTIVE	
2.1.1	Caratteristiche costruttive Funzionamento	
2.1.3	Differenziale	
2.2	APPLICAZIONI CRITICHE	20
2.2.1	Applicazioni critiche	
2.2.2	Informazioni	
2.3 2.3.1	CARICHI RADIALI Informazioni	
2.3.2	Entrata	
2.3.3	Uscita	22
2.4	LUBRIFICAZIONE	
2.4.1	Informazioni	
2.4.2	Lubrificanti Quantità	
3. T	XF/S	
3.1	TXF/S	26
4. 11	NFORMAZIONI DI PRODOTTO TXF/S	
4.1	TIPOLOGIA	27
4.1.1	Designazione	27

4.1.2	Versioni	29
4.2	POSIZIONI DI MONTAGGIO	31
4.2.1	Posizioni di montaggio	31
4.2.2	Posizione morsettiera	34
5. D	IMENSIONI TXF/S	
5.1	TXF	35
5.1.1	TXF	35
5.1.2	Pesi	36
5.2	S	37
5.2.1	SF	37
5.2.2	ST	38
5.2.3	SP	39
5.2.4	S.D	39
5.2.5	S - PAM	
5.2.6	S - PAM C	
5.2.7	S - ECE	
5.2.8	Pesi	42
5.3	MOTORI ELETTRICI	43
5.3.1	Motori elettrici	43
5.3.2	Motori ad efficienza standard (TS), alta (TH) e premium (TP)	
5.3.3	Potenza nominale - [kW]	46
6. A	CCESSORI & OPZIONI TXF/S	
6.1	SERVOCOMANDO ELETTRICO	47
6.2	ALTRI ACCESSORI & OPZIONI	50
7. T	XF/S - PRESTAZIONALI	
7.1	TXF - PRESTAZIONI	51
7.1.1	TXF	
7.1.2	TXF - Curve prestazioni	52
7.2	S - PRESTAZIONI	55
7.2.1	S	
7.2.2	S.D	56
7.2.3	S - Curve prestazioni	57

7.2.4	S.D - Curva di coppia con differenziale	60
8. VI	'HA/VH	
8.1	VHA/VH	61
9. IN	NFORMAZIONI DI PRODOTTO VHA/VH	
9.19.1.19.1.2	TIPOLOGIA Designazione Versioni	62
9.2 9.2.1 9.2.2	Posizioni di montaggio Posizione morsettiera	65
9.3 9.3.1 9.3.2	COMBINAZIONI VH/A VH/	7 1
10. [DIMENSIONI VHA/VH	
10.1 10.1.1 10.1.2 10.1.3 10.1.4 10.1.5	VH/A VH/A.1 VHF/A.1 VH/A.2-3 VHF/A.2-3 - VHU/A.2-3 Pesi	75 74 75
10.2 10.2.1 10.2.2 10.2.3 10.2.4 10.2.5 10.2.6 10.2.7	VH/2-3 VHF/2-3	80 81 82 84 85 87
11. A	ACCESSORI & OPZIONI VHA/VH	
11.1	FLANGIA USCITA	90

93
94
108
165
166
166 170
171
171
175
176 176
177
178
180
182
183
184
184

16.4	COPERCHIO DI PROTEZIONE ASSE LENTO	180
17. 1	TXF/S+NMRV - PRESTAZIONALI	
17.1	TXF+NMRV - PRESTAZIONI	
17.2	SF+NMRV - PRESTAZIONI	
18. 0	CONDIZIONI DI VENDITA	
18.1	CONDIZIONI DI VENDITA	219

1.1 COMPANY PROFILE

Motovario® persegue una filosofia aziendale volta a comunicare con chiarezza e determinazione il proprio brand e i propri prodotti a livello internazionale, cercando quotidianamente soluzioni innovative per soddisfare e anticipare le esigenze del mercato. Motovario® fornisce soluzioni tecnologicamente avanzate nel campo degli organi di trasmissione per applicazioni industriali e civili in qualsiasi parte del mondo.

L'Azienda

A Formigine, nel cuore industriale di Modena, Motovario® vanta una sede di 50.000 metri quadrati e conta 500 dipendenti.

1965 Fondazione di Motovario®

1998 Acquisizione di Spaggiari Trasmissioni[®], un importante brand nel campo della tecnologia meccanica.

2006 Il controllo dell'azienda è stato rilevato da un fondo d'investimento privato gestito da Synergo SGR, per coordinare lo sviluppo e supportare la crescita in tutto il mondo.

2014 Acquisizione di Pujol.

2015 Acquisizione da parte di TECO.

Il cuore di Motovario® è un processo produttivo evoluto fondato su una tecnologia in grado di trasformare potenza in movimento. Motovario[®] è al centro dei processi produttivi che muovono le moderne industrie di tutto il mondo. Qualità e affidabilità sono le sue caratteristiche fondamentali. Motovario® è presente in tutto il mondo con filiali in Francia, Spagna, Germania, Inghilterra, Cina, India e Stati Uniti. Rete commerciale e customer service garantiscono a tutti i clienti un'assistenza immediata e di qualità. A questi si aggiunge la rete mondiale di centri di assemblaggio qualificati MAC, Motovario Assembly Centre, attivi in Italia, Australia, Benelux, Bulgaria, Cina, Corea del sud, Finlandia, Francia, India, Irlanda, Israele, Malesia, Polonia, Portogallo, Regno Unito, Spagna, Stati Uniti, Svezia, Turchia e Ucraina. L'azienda è in grado di offrire al mercato un'ampia gamma di prodotti: variatori di velocità, riduttori e motoriduttori coassiali, ad assi ortogonali, pendolari, a vite senza fine, motori elettrici, inverter e motoinverter. Le tecnologie di ultima generazione impiegate nel processo produttivo garantiscono il massimo livello di qualità e precisione. 170 impianti a controllo numerico, serviti da linee LGV per lo stoccaggio in magazzini automatici, garantiscono al reparto produttivo Motovario® un ottimo livello di efficienza. Le linee di assemblaggio altamente automatizzate sono supportate da uno specifico sistema informatico. Il sistema di controllo statistico di processo gestisce l'andamento produttivo e previene la generazione degli scarti, permettendo di monitorare tutte le fasi di lavorazione. All'interno dello stabilimento vengono effettuati i trattamenti termici di ricottura, normalizzazione, tempra e cementazione. L'impianto funziona 24 ore su 24 festivi compresi. Affidabilità, robustezza e versatilità sono le caratteristiche che identificano i prodotti Motovario®, la risposta più qualificata ad ogni esigenza di trasmissione di potenza.

Principali settori INDUSTRIALI

- Industria meccanica-elettromeccanica (autolavaggi, pompe, barriere e porte automatiche, sezionatori di corrente)
- Industria ceramica (linee alimentazione forni e presse, impacchettamento)
- Industria alimentare, agricoltura, enologica
- Industria del legno, marmo e vetro
- Industria dell'imballaggio e dell'imbottigliamento
- Industria tessile, calzaturiera e della pelle
- Industria della movimentazione merci
- Industria delle costruzioni edili
- Industria molitoria, zootecnica, floricoltura
- Industria siderurgica e della lavorazione dei metalli
- Industria mineraria-cave e cemento
- Industria energetica (solare, nucleare, biomasse, eolico)
- Industria del divertimento (teatri, luna park, giochi automatici)
- Industria chimico-farmaceutica
- Industria cartaria e grafica
- Industria lavorazione plastica e gomma
- Industria delle telecomunicazioni (orientazione satelliti, radar militari)
- Studi tecnici e di consulenza

1.1 COMPANY PROFILE

Certificazioni

I nostri prodotti possono essere realizzati in conformità alla Direttiva ATEX 2014/34/UE. La certificazione EAC (EurAsian Conformity) assicura la qualità dei nostri motori, motoriduttori e motovariatori: documento fondamentale per l'ingresso delle merci sul territorio della Federazione Russa. I motori sono certificati UL, il cui standard è garanzia di sicurezza e qualità in Nord America.

Quality CONCEPT

Motovario* ha ottenuto il rinnovo della certificazione di qualità del proprio sistema produttivo in conformità con le norme UNI EN ISO 9001:2008. Un riconoscimento internazionale che testimonia l'impegno e la propensione dell'azienda al miglioramento costante dei prodotti, dei progetti, dei servizio offerti. Inoltre, Motovario ha ottenuto la certificazione OHSAS 18001:2007 (Occupational Health and Safety Assessment Series) che definisce i requisiti del sistema di gestione della sicurezza e della salute dei lavoratori sul luogo di lavoro.

Research & DEVELOPMENT

Innovazione tecnologica come fattore determinante per competere. Ricerca e cambiamento sono stati il motore dei suoi 50 anni di storia, a garanzia di una competitività a livello globale, con prodotti sempre più evoluti in termini di prestazioni e affidabilità. Ogni anno l'azienda investe una quota crescente del proprio fatturato in ricerca e sviluppo, destinato ad una costante attività di studio ed analisi sui prodotti, sui processi di controllo e di certificazione delle prestazioni. Per garantire al cliente prodotti particolarmente idonei alle prestazioni richieste, l'azienda svolge simulazioni e prove su tutti i nuovi prodotti, come le prove NVH (Noise, Vibration, Harshness) effettuate nella moderna cella semi-anecoica.

Customer CARE

Strumenti innovativi e software applicativi dedicati al supporto delle problematiche tecniche e logistiche dei partner di tutto il mondo garantiscono un servizio di assistenza puntuale e personalizzato. Dall'esperienza Motovario* nasce il nuovo portale online MyMotovario 4.0, con cui è possibile selezionare il prodotto ed esportare il file 3D. Uffici tecnici e progettisti possono scaricare il modello tridimensionale del prodotto richiesto per personalizzarlo ed implementarlo direttamente all'interno dei propri layout. Per offrire il massimo servizio e qualità al cliente, Motovario* mette a disposizione di tutti i suoi clienti i servizi online: Order Tracking, che consente di visualizzare lo stato di avanzamento del proprio ordine in tempo reale ed il servizio Stock Availability tramite il quale è possibile consultare le giacenze dei nostri prodotti, sia della sede Italiana che delle filiali.

Motovario sceglie l'evoluzione tecnologica.

Motovario® sceglie l'evoluzione tecnologica e collabora attivamente con le facoltà di Ingegneria degli Atenei di Modena e Reggio Emilia e di Bologna.

Affidabilità, robustezza, versatilità

Sono queste le peculiarità che identificano il prodotto realizzato da Motovario. Una vasta gamma di organi di trasmissione che si propongono quale risposta qualificata e innovativa a ogni esigenza di applicazione di potenza. L'impiego di strumenti tecnologicamente avanzati e il costante impegno nella ricerca e nell'aggiornamento delle strutture produttive consentono di offrire un elevato standard qualitativo e prestazionale al servizio dell'industria e delle più diverse applicazioni. Motovario è tra le più importanti e note aziende in Italia nella progettazione, produzione e commercializzazione di organi di trasmissione per applicazioni industriali e civili. L'intera produzione si svolge negli oltre 50.000 mq degli stabilimenti di Formigine e Ubersetto (MO), dove sono impiegate circa 500 persone che, unitamente a 170 impianti a controllo numerico e ai più avanzati sistemi automatizzati di movimentazione, stoccaggio e assemblaggio. assicurano un elevato standard qualitativo a tutti i prodotti. All'interno della rete sono inoltre attivi più di 40 centri di assemblaggio certificati Motovario, che sono in grado di fornire prodotti in un'ampia gamma di versioni anche personalizzate, con capacità di service molto elevata e tempi di risposta molto brevi. In questo contesto l'offerta di prodotto è in grado di soddisfare le esigenze di tutti i settori impiantistici industriali nelle diverse applicazioni, e comprende: variatori di velocità, riduttori e motoriduttori a ingranaggi coassiali, ad assi ortogonali, paralleli, a vite senza fine, motori elettrici e motoinverter. Denominatore comune di tutti i prodotti realizzati è sicuramente l'affidabilità, la robustezza e la versatilità, cui si aggiunge un elevato grado di innovazione. Cuore dell'innovazione tecnologica di una azienda è sicuramente l'elaborazione di strumenti integrati per la simulazione a calcolo e la gestione informatizzata dei vari processi preposti allo sviluppo dei nuovi prodotti. Tramite simulazioni delle condizioni sia di esercizio che di allestimento che di processo produttivo occorre poter analizzare e ottimizzare in modo sinergico la struttura complessiva funzionale del prodotto. Tutto ciò attuando un piano sperimentale completo, senza ricorrere a interpolazioni e approssimazioni, che tendono spesso a nascondere casi critici o sovradimensionamenti non funzionali alla massimizzazione del rapporto qualità/costi.

Metodologia di calcolo a normativa ad alta efficienza

In quest'ottica sono state sviluppate tutte una serie di funzioni dedicate, tra le quali si possono evidenziare quelle per:

- L'ottimizzazione dei singoli rapporti di riduzione e ottimizzazione delle combinazioni tra i vari di stadi di riduzione sulla base di serie normali obiettivo parametrizzabili;
- Il calcolo di valori di coppia e forze esterne massime ammissibili sul gruppo riduttore, mediante algoritmi numerici iterativi di verifica puntuale su valori obiettivo di durata/sicurezza dei singoli componenti;
- La generazione di database per il caricamento del modello FEM di analisi strutturale mediante scrittura automatica su apposito file di tutte le componenti di reazione cuscinetti in tutte le condizioni di carico e selezione automatica dei casi critici da verificare.

Altro obiettivo della metodologia elaborata è la sinergia tra il calcolo a normativa e il calcolo strutturale FEM e l'implementazione delle procedure di caricamento dei modelli FEM stessi volta a semplificare i dati di input, criteri di meshatura e di vincolo, routine di calcolo, nonché ad automatizzare le elaborazioni e la sintesi dei dati risultanti.

Competitività e vantaggi operativi della nuova metodologia

I vantaggi pratici a livello aziendale che questa metodologia comporta rispetto alle procedure tradizionali di calcolo sono numerosi:

- Ottimizzazione iterativa del progetto fin dalla fase di impostazione;
- Valutazione puntuale dei vari fattori di servizio e dei livelli di affidabilità sull'intero gruppo riduttore e per tutte le condizioni di esercizio sia a catalogo che secondo richieste clienti;
- Maggiore tempestività di supporto ai clienti per l'analisi di configurazioni di prodotto personalizzate;
- Database aziendali integrati aggiornabili real time.

Ampliamento di gamma in continua evoluzione

La crescita costante e significativa del gruppo Motovario passa attraverso la continua ricerca di nuovi strumenti di calcolo e progettazione, oltre che per l'assistenza ai clienti. Questa ricerca ha condotto a dei nuovi strumenti che hanno portato innovazione migliorando l'affidabilità dei prodotti oltre ad una evoluzione positiva nella gestione del mercato. I software utilizzati per la progettazione, calcolo e la gestione sono:

- Solidworks;
- Kissoft;
- Kissys;
- Ansys;
- Software di analisi modellazione FEM;
- Software di simulazione e progettazione circuitale;
- Fogli di calcolo specifici;
- SAP.

Nel portale MyMotovario 4.0, nella SELEZIONE DEL PRODOTTO vi è una sezione denominata APPLICAZIONI dove il cliente fornisce i dati dell'applicazione ed in pochi minuti è disponibile il risultato con il riduttore ritenuto più opportuno.

Prodotti MOTOVARIO

RIDUTTORI COASSIALI

Carcassa in ghisa o alluminio Albero lento fino a 90 mm Mn₂ fino a 8600 Nm Stadi di riduzione 1, 2, 3 Rapporti fino a 354 Gruppi Atex

RIDUTTORI ORTOGONALI

Carcassa in ghisa o alluminio Albero lento fino a 110 mm Mn₂ fino a 14000 Nm Stadi di riduzione 2, 3 Rapporti fino a 443 Gruppi Atex

RIDUTTORI PENDOLARI

Carcassa in ghisa Albero lento fino a 90 mm Mn₂ fino a 10250 Nm Stadi di riduzione 2, 3 Rapporti fino a 395 Gruppi Atex

RIDUTTORI A VITE SENZA FINE

Carcassa in ghisa o alluminio Albero lento fino a 50 mm Mn₂ fino a 2700 Nm Rapporti fino a 1083 Gruppi Atex

RIDUTTORI PARALLELI ED ORTOGONALI PER INDUSTRIA MEDIO PESANTE

Carcassa in ghisa Albero lento fino a 180 mm Mn₂ fino a 110000 Nm Stadi di riduzione 1, 2, 3, 4 Rapporti fino a 636 Gruppi Atex

MOTOVARIATORI E MOTOVARIARIDUTTORI

Carcassa in ghisa o alluminio Mn₂ fino a 5000 Nm Rapporti da 1,5 a 7 Gruppi Atex

MOTORI ELETTRICI

Potenze fino a 90 kW Poli 2, 4, 6 Trifase e monofase, autofrenanti, doppia polarità Grado di protezione fino a IP66

AZIONAMENTI

DRIVON - motoinverter

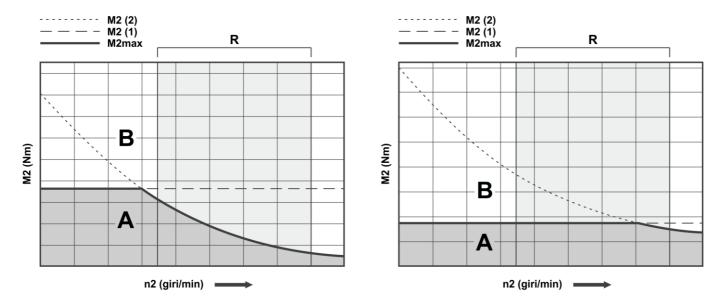
Alimentazione trifase e monofase Controllo vettoriale sensorless ad alta dinamica Potenze fino a 5,5 kW STO integrato standard Bus di campo integrati Bus di campo opzionali

1.3 SIMBOLOGIA E FORMULE

1.3.1 Simbologia

Dimensione fisica	Simbolo	Simbolo unità di misura	Entrata	Uscita
Potenza	Р	[kW]	P ₁	P ₂
Potenza richiesta	Pr	[kW]	Pr ₁	Pr ₂
Potenza nominale	Pn	[kW]	Pn ₁	Pn ₂
Momento torcente	М	[Nm]	M ₁	M ₂
Momento torcente nominale	Mn	[Nm]		Mn ₂
Momento torcente richiesto	Mr	[Nm]	Mr ₁	Mr ₂
Numero giri	n	[rpm]	n ₁	n ₂
Forza	F	[N]		
Carico radiale	Fr	[N]	Fr ₁	Fr ₂
Carico assiale	Fa	[N]	Fa ₁	Fa ₂
Rapporto di riduzione	i			
Rendimento dinamico	η _d			
Fattore di servizio	f.s.			
Statico	s			
Dinamico	d			
Calcolato	С			
Massimo	max			
Minimo	min			
Momenti d'inerzia	J	[kgm ²]	J ₁	
Temperatura ambiente	T _{amb}	[°C]		
Dimensioni		[mm]		
Numero principi vite	Z1			
Angolo elica	Υ	[°′″]		
Modulo assiale	Mx			
Rendimento dinamico a n1= 1400 rpm	ηδ(1400)			
Rendimento statico	ηs			

1.3 SIMBOLOGIA E FORMULE

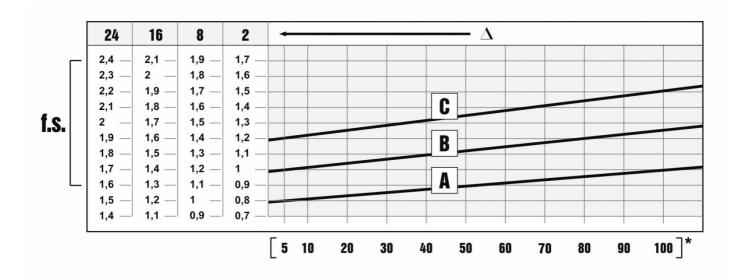

1.3.2 Formule

RIDUTTORE		
Tempo di avviamento o arresto	t= v / a	[s]
Velocità di rotazione	v= π * d * n / 60 v= ω * r	[m/s]
Velocità angolare	n= 60 * v / (π * d) ω= v / r	[rpm] [rad/s]
Accelerazione o decelerazione	a= v / t	[m/s ²]
Accelerazione angolare	α= n / (9,55 * t) α= ω / t	[rad/s ²]
Spazio (in funzione di una accelerazione o di una velocità iniziale o finale)	s= a * t ² / 2 s= v * t / 2	[m]
Forza di traslazione su piano orizzontale	F= µ * m * g	
Forza di traslazione su piano verticale (sollevamento)	F= m * g	[N]
Forza di traslazione su piano inclinato	F= m * g (μ * cosβ + senβ)	
m= massa [kg]; g= accelerazione gravitazionale [m/s 2]; μ = coefficiente di attrito; β = angolo di inclinazione		
Momento di inerzia	$J= m * v^2 / \omega^2$	[kgm ²]
Momento torcente	M= F * d / 2 M= J * ω / t	[Nm]

MOTORE e MOTORIDUTTORE		
Tempo di accelerazione	ta= (Jext+Jm)* $n_n/9,55+(M_{spunto}-Mr)$	[s]
Tempo di frenatura	ts= (Jext+Jm)* n_n /9,55+(M_{spunto} +Mr)	[s]
Angolo di rotazione del motore in accelerazione	φ= n _n * ta / 19,1	[rad]
Angolo di rotazione del motore in frenatura	φ= n _n * ts / 19,1	[rad]
Potenza resa all'albero di un motore monofase	P= V * I * η *cosω	[W]
Potenza resa all'albero di un motore trifase	P= 1,73 * V * I * ŋ * cosω	[W]

FUNZIONAMENTO a 60Hz		
Velocità angolare a 60Hz n _{60Hz} = 1,2 * n _{50Hz} [rpr		[rpm]
Potenza a 60Hz	P1 _{60Hz} = P1 _{50Hz} * V _{60Hz} /V _{50Hz}	[kW]
Se la tensione di alimentazione V _{60Hz} è uguale a quella di avvolgimento V _{50Hz} , la potenza non varia ovvero P1 _{60Hz} = P1 _{50Hz}		
Se la tensione di alimentazione V_{60Hz} è maggiore del 20% di quella di avvolgimento V_{50Hz} , la potenza aumenta del 20% ovvero P1 $_{60Hz}$ = 1,2 P1 $_{50Hz}$		
Momento torcente a 60Hz M _{60hz} = M _{50Hz} * P1 _{60Hz} / (1,2 * P1 _{50Hz}) [Nm]		[Nm]
Fattore di servizio a 60Hz f.s _{60Hz} = f.s _{50Hz} * 1,175 * P1 _{50Hz} / P1 _{60Hz} -		-

1.4 SELEZIONE DEL PRODOTTO



La curva prestazionale di un motovariatore è solitamente suddivisa in due parti distinte: una ad andamento costante ed una ad andamento decrescente. Come illustrato nelle figure, tale curva è calcolata come valore minimo tra:

- Un limite orizzontale costante al variare dei giri, che rappresenta il limite meccanico del solo variatore (M2-1).
- Una curva decrescente all'aumentare della velocità, che rappresenta la curva di coppia del motovariatore alla potenza di targa (M2-2).

Al fine di non danneggiare il variatore, nella parte di curva a coppia orizzontale la potenza erogata dal motore elettrico durante il funzionamento deve essere inferiore a quella di targa (potenza nominale). Nella parte ad alti giri a coppia decrescente, l'applicazione può sfruttare senza problemi tutta la potenza nominale del motore. Pertanto se il range R di variazione dei giri richiesto dall'applicazione non interessa un tratto di curva orizzontale (figura a sinistra) non c'è necessità di un controllo della coppia effettivamente erogata dal motore, in quanto a potenza di targa il motovariatore lavorerà sicuramente sotto al limite meccanico (campo corretto A). Al contrario, se il range R di variazione dei giri richiesto dall'applicazione è tale da interessare anche un tratto di curva limite orizzontale (figura a destra), è obbligatorio verificare che la coppia massima richiesta non superi quella limite indicata su tutto il campo possibile di variazione dei giri. In caso di scelta di un gruppo motovariatore non occorre considerare un fattore di servizio dell'applicazione: è infatti sufficiente assicurarsi che il funzionamento alle varie velocità richieste sia interno all'area corretta A. In caso di scelta di un motovariariduttore invece occorre considerare un opportuno fattore di servizio (relativo al riduttore) come indicato a catalogo. Sia nel caso di motovariatore che nel caso di motovariariduttore, il numero massimo di avviamenti ammissibile dipende dal tipo di applicazione, indicativamente non deve mai superare i 5-10 avviamenti al minuto. Per valori superiori si consiglia di contattare l'ASSISTENZA TECNICA MOTOVARIO.

1.5 FATTORE DI SERVIZIO

Il fattore di servizio f.s. dipende dalle condizioni di funzionamento alle quali il riduttore è sottoposto. I parametri che occorre considerare per una corretta selezione del fattore di servizio più adeguato sono:

- tipo del carico della macchina azionata: A B C
- durata di funzionamento giornaliero: ore/giorno (Δ)
- frequenza di avviamento: avv./ora (*)

CARICO:

- A uniforme = $fa \le 0.3$
- B medio = fa ≤ 3
- **C** forte = fa ≤ 10

fa = Je/Jm

- Je [kgm²] momento d'inerzia esterno ridotto all'albero motore
- Jm [kgm^{2]} momento d'inerzia motore

Se fa > 10 interpellare l'ASSISTENZA TECNICA MOTOVARIO.

Nel caso di un motovariariduttore, una volta determinato il fattore di servizio dell'applicazione è necessario confrontare tale valore con il fattore di sicurezza del riduttore S riportato nelle tabelle di selezione, verificando la condizione $S \ge f.s.$ Il S massimo di avviamenti ammissibile è funzione del tipo di applicazione, indicativamente non deve superare i 5-10 al minuto, per valori superiori contattare l'ASSISTENZA TECNICA MOTOVARIO.

- A. Coclee per materiali leggeri, ventole, linee di montaggio, nastri trasportatori per materiali leggeri, piccoli agitatori, elevatori, macchine pulitrici, macchine riempitrici, macchine per il controllo, nastri trasportatori.
- B. Dispositivi di avvolgimento, apparecchi per l'alimentazione delle macchine per il legno, montacarichi, equilibratrici, filettatrici, agitatori medi e mescolatori, nastri trasportatori per materiali pesanti, verricelli, porte scorrevoli, raschiatore di concime, macchine per l'imballaggio, betoniere, meccanismi per il movimento delle gru, frese, piegatrici, pompe a ingranaggi.
- C. Agitatori per materiali pesanti, cesoie, presse, centrifughe, supporti rotanti, verricelli ed ascensori per materiali pesanti, torni per la rettifica, frantoi da pietre, elevatori a tazze, perforatrici, mulini a martello, presse ad eccentrico, piegatrici, tavole rotanti, barilatrici, vibratori, trinciatrici.

1.6 INSTALLAZIONE

Per l'installazione del variariduttore è consigliabile attenersi alle seguenti indicazioni:

- Il fissaggio sulla macchina deve essere stabile per evitare qualsiasi vibrazione.
- Verificare il corretto senso di rotazione dell'albero di uscita del riduttore prima del montaggio del gruppo sulla macchina.
- In caso di periodi particolarmente lunghi di stoccaggio (4/6 mesi) se l'anello di tenuta non è immerso nel lubrificante contenuto all'interno del gruppo si consiglia la sua sostituzione in quanto la gomma potrebbe essersi incollata all'albero o addirittura aver perso quelle caratteristiche di elasticità necessarie al corretto funzionamento.
- Quando possibile proteggere il variariduttore dall'irraggiamento solare e dalle intemperie.
- Garantire un corretto raffreddamento del motore assicurando un buon passaggio d'aria dal lato ventola.
- Nel caso di temperature ambiente < -5°C o >+40°C contattare l'ASSISTENZA TECNICA MOTOVARIO.
- Il montaggio dei vari organi (pulegge, ruote dentate, giunti, alberi, ecc.) sugli alberi pieni o cavi deve essere eseguito utilizzando appositi fori filettati o altri sistemi che comunque garantiscano una corretta operazione senza rischiare il danneggiamento dei cuscinetti o delle parti esterne dei gruppi.
- Lubrificare le superfici a contatto per evitare grippaggi o ossidazioni.
- La verniciatura non deve assolutamente interessare le parti in gomma e i fori esistenti sui tappi di sfiato, quando presenti.
- Per i gruppi provvisti di tappi per olio sostituire il tappo chiuso utilizzato per la spedizione con l'apposito tappo di sfiato.
- Controllare il corretto livello del lubrificante tramite, quando prevista, l'apposita spia.
- La messa in funzione deve avvenire in maniera graduale, evitando l'applicazione immediata del carico massimo.
- Quando sotto alla motorizzazione sono presenti organi, cose o materiali danneggiabili dall'eventuale fuoriuscita, anche limitata, di olio è opportuno prevedere un'apposita protezione.

N.B. in caso di etichetta adesiva su cappellotto, qualora questo venga sostituito, è necessario applicare una nuova etichetta, che dovrà essere richiesta dal cliente a Motovario.

2.1 CARATTERISTICHE COSTRUTTIVE

2.1.1 Caratteristiche costruttive

I prodotti Motovario vengono forniti con il seguente stato di finitura superficiale.

Gruppi con casse in lega di alluminio pressofuso

Le fusioni subiscono le seguenti operazioni di pulizia superficiale:

- Eliminazione delle bave di fonderia con sistemi meccanici di asportazione (trancianti).
- Accurata pallinatura.
- Verniciatura.
- Lavaggio e passivazione.

Gruppi con casse in ghisa grigia:

• Le fusioni vengono sempre verniciate.

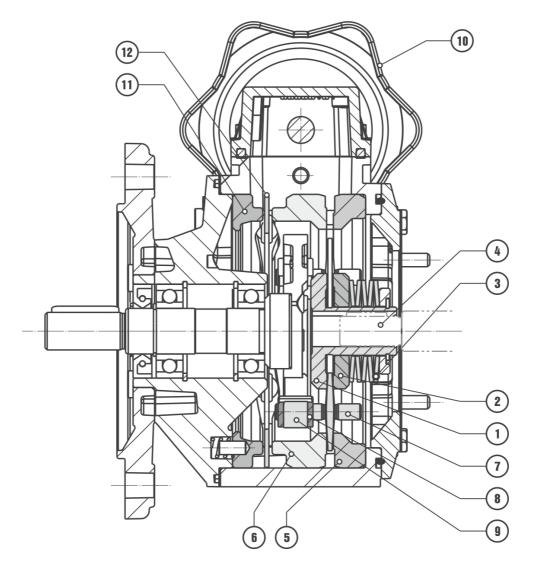
Gruppi con coperchio in ghisa grigia: I riduttori della serie H... a 2, 3 stadi nelle grandezze 125 vengono forniti di coperchio in ghisa grigia e dotati di targhetta metallica serigrafata.

Specifiche verniciatura:

• Epossipoliestere Blu Bucciato RAL5010. Prodotto utilizzato: Polvere termoindurente a base di resine poliesteri, modificate con resina epossidica.

Proprietà meccaniche: Le prove eseguite su lamierini Unichim sgrassati con spessore del film di 60 micron hanno soddisfatto le seguenti caratteristiche: aderenza (ISO2409).

Resistenza al calore: 24 ORE A 150°C.


Resistenza alla corrosione: Nebbia salina ASTM B 117/97 da 100 a 500 ore in funzione del trattamento preliminare del supporto.

Prestazioni:

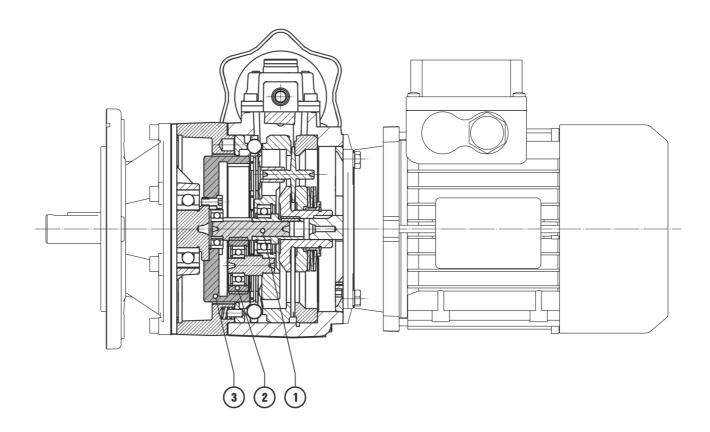
Capacità di carico verificata secondo DIN 3990, ISO 6336, AGMA 2101, ISO 10300, DIN 3991, ISO 281, DIN 743, ISO 14521, DIN 3996, BS 721, AGMA 6034.

2.1 CARATTERISTICHE COSTRUTTIVE

2.1.2 Funzionamento

N°	Descrizione
1	Pista interna fissa
2	Pista interna mobile
3	Molla a tazza
4	Albero

N°	Descrizione
5	Pista esterna fissa
6	Pista esterna mobile
7	Satellite
8	Boccola satellite


N°	Descrizione
9	Disco porta satellite
10	Volantino di comando
11	Pista esterna di registro
12	Anello portasfere

Il motovariatore e costituito da due piste interne (1 e 2) tenute da molle a tazza (3) calettate sull'albero motore (4), da due piste esterne (5 e 6) fisse alla carcassa e da un sufficiente numero di satelliti (7) supportati mediante boccole (8) scorrevoli in senso radiale nel portasatellite (9) che funge da raccoglitore del moto. I satelliti, a contatto con le piste interne, dalle quali ricevono il moto, e con le piste esterne fisse, vengono così ad assumere un doppio movimento: uno di rotazione intorno al proprio asse, l'altro di rivoluzione attorno alle piste esterne che viene raccolto dal portasatellite solidale con l'albero di uscita. La variazione del moto si ottiene agendo sul volantino di comando (10), mediante il quale si sposta angolarmente la pista (6) appoggiata mediante corona di sfere (12) sulla contropista con camme a mantello (11). Tale spostamento viene a modificare lo spazio tra le piste (5 e 6) variando quindi lo spostamento radiale dei satelliti e quindi modificando il moto relativo trasmesso al portasatellite.

N.B. La suddetta variazione deve essere assolutamente eseguita a motore in moto.

2.1 CARATTERISTICHE COSTRUTTIVE

2.1.3 Differenziale

Il motovariatore può essere fornito completo di gruppo epicicloidale/differenziale che consente una variazione della velocità in uscita da zero alla massima prevista. Ciò e possibile in quanto la velocità costante in entrata al variatore viene trasmessa anche al pignone (1) di traino del riduttore/variatore epicicloidale. La velocità costante di entrata e trasformata in velocità variabile del variatore e ritrasmessa ai satelliti (2) del riduttore/variatore epicicloidale. In questo modo si eguaglia la velocità dei satelliti (2) a quella del pignone di traino (1); con tali condizioni la velocità della corona esterna e nulla e quindi il numero di giri sull'albero di uscita e zero.

2.2 APPLICAZIONI CRITICHE

2.2.1 Applicazioni critiche

TXF - SF	002-003	005	010	020	030	050	100
2000 < n1 < 3000	•	1	•	В	А	А	А
n1 > 3000	В	В	В	А	А	А	А
V3 - V6	В	В	В	В	В	В	В

н	A30	A40	A50	A60
V5 - V1: 1500 < n1 < 3000	1	•	•	·
n1 > 3000	В	В	В	В
V3 - V6	В	В	В	В

Н	030	040	050	060	080	100	125
V5 - V1: 1500 < n1 < 3000	•	✓	✓	•	✓	✓	В
n1 > 3000	В	В	В	В	В	В	А
V3 - V6	В	В	В	В	В	В	В

		NMRV			NMRV-P				NMRV	
NMRV - NMRV-P	030	030 040 050		063	075	090	110	130	150	
V5: 1500 < n1 < 3000	1	•	•	В	В	В	В	В	В	
n1 > 3000	В	В	В	В	В	А	А	А	А	
V6	В	В	В	В	В	В	В	В	В	

[✓] Applicazione verificata

2.2.2 Informazioni

Le prestazioni indicate a catalogo corrispondono alla posizione B3 o similari, quando cioè il primo stadio non è interamente immerso in olio. Per situazioni di montaggio diverse e/o velocità di ingresso particolari attenersi alle tabelle che evidenziano situazioni critiche diverse per ciascuna grandezza di riduttore. Occorre anche tenere nella giusta considerazione e valutare attentamente le seguenti applicazioni consultando l'ASSISTENZA TECNICA MOTOVARIO:

- Utilizzo in servizi che potrebbero risultare pericolosi per l'uomo in caso di rottura del riduttore.
- Evitare l'utilizzo come moltiplicatore.
- Applicazioni con inerzie particolarmente elevate.
- Utilizzo come argano di sollevamento.
- Applicazioni con elevate sollecitazioni dinamiche sulla cassa del riduttore.
- Utilizzo in ambiente con T_{amb} inferiore a -5°C o superiore a 40°C.
- Utilizzo in ambiente con presenza di aggressivi chimici.
- Utilizzo in ambiente salmastro.
- Posizioni di piazzamento non previste a catalogo.
- Utilizzo in ambiente radioattivo.
- Utilizzo in ambiente con pressione diversa da quella atmosferica.
- Utilizzo di motori autofrenanti accoppiati a variatori/variariduttori.

Evitare applicazioni dove è prevista l'immersione, anche parziale, del riduttore.

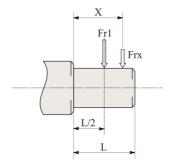
In presenza di sovraccarichi, dovuti ad avviamenti a pieno carico, frenature, urti ed altre cause statiche e dinamiche, verificare che il picco del momento torcente sia sempre inferiore a $2*Mn_2$.

A Applicazione sconsigliata

B Verificare l'applicazione e/o contattare l'ASSISTENZA TECNICA MOTOVARIO.

2.3 CARICHI RADIALI

2.3.1 Informazioni


Il valore del carico radiale [N] ammissibile viene riportato nelle tabelle prestazionali, ed è relativo al carico applicato sulla mezzeria dell'albero e nelle condizioni più sfavorevoli come angolo di applicazione e senso di rotazione. I carichi assiali massimi ammissibili sono 1/5 del valore del carico radiale indicato quando sono applicati in combinazione col carico radiale stesso. Nelle tabelle relative agli alberi di uscita viene indicato il valore massimo ammissibile, questo valore non deve mai essere superato in quanto è relativo alla resistenza della cassa. Possono essere verificate condizioni particolari di carico radiale superiori ai limiti di catalogo, in questo caso contattare il ns. Servizio Tecnico e fornire tutti i dati applicativi: direzione del carico, senso di rotazione dell'albero, tipo di servizio. Nel caso di alberi bisporgenti e cavi in cui è previsto l'applicazione di carichi radiali su entrambe le estremità, i carichi massimi ammissibili sono da definire in funzione delle condizioni di esercizio specifiche, in questo caso contattare il ns. Servizio Tecnico. Il carico radiale sull'albero si calcola con la seguente formula: Fre=(2000*M*fz)/D≤Fr1 o Fr2

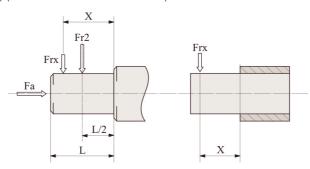
- Fre [N] Carico radiale risultante
- M [Nm] Momento torcente sull'albero
- **D** [mm] Diametro dell'elemento di trasmissione montato sull'albero
- Fr1-Fr2 [N] Valore di carico radiale massimo ammesso (ved. tab. relative)
- fz = 1,1 pignone dentato 1,4 ruota per catena 1,7 puleggia a gola 2,5 puleggia piana

2.3.2 Entrata

Con carico radiale risultante non in mezzeria dell'albero, correggere il carico radiale ammissibile Fr1 con la formula: Frx=(Fr1*a)/(b+x)

- a, b = valori riportati nelle tabelle
- x = distanza del punto di applicazione del carico dallo spallamento dell'albero

SF-ST	003	005	010	020	030	050	100
a	46	59	75	85	117	117	141
b	35	44	55	60	87	87	101
Fr1 max	460	660	880	910	1480	1480	5900


(**Fr1 max) Valore massimo ammissibile dal riduttore in condizioni statiche e/o per funzionamenti limitati. Per carichi radiali in servizio continuativo verificare i valori delle tabelle prestazionali calcolati in funzione della carcassa, dell'albero e dei cuscinetti.

2.3 CARICHI RADIALI

2.3.3 Uscita

Con carico radiale risultante non in mezzeria dell'albero, correggere il carico radiale ammissibile Fr2 con la formula: Frx=(Fr2*a)/(b+x)

- a, b = valori riportati nelle tabelle
- x = distanza del punto di applicazione del carico dallo spallamento dell'albero

TXF	002	005	010
а	43	63	74
b	28	43	49
Fr2 max	550	1050	1350

SF	003	005	010	020	030	050	100
a	62	75	94	107	154	154	169
b	47	55	69	77	114	114	129
Fr2 max	760	1120	1910	2290	4540	4540	5890

ST	003	005	010	020	030	050	100
a	73	111	135	161	189	189	228
b	58	91	110	131	149	149	188
Fr2 max	1000	2080	2500	3000	5600	5600	7160

Н	A41	A51	A61	A32/A33	A42/A43	A52/A53	A62/A63
a	81	83	103	105	115	135	155
b	61	58	73	85	90	105	115
Fr2 max (**)	1100	3000	4500	2000	4300	6000	8000

HR	041	051	061	081	101	121
a	89	98	115	151	210	232
b	79	73	85	111	155	177
Fr2 max (**)	1000	2500	3700	4000	5000	6000
Fa max (*)	5500	6500	7000	8500	11500	13500

Н	032/033	042/043	052/053	062/063	082/083	102/103	122/123
a	120	138	169	195	238	281	331
b	96	108	134	155	188	221	261
Fr2 max (**)	5500	6600	8000	12000	18000	22000	30000

NMRV NMRV-P	030	040	050	063	075	090	110	130	150
a	65	84	101	120	131	162	176	188	215
b	50	64	76	95	101	122	136	148	174
Fr2 max (**)	1830	3490	4840	6270	7380	8180	12000	13500	18000

(**Fr2) Valore massimo ammissibile dal riduttore in condizioni statiche e/o per funzionamenti limitati. Per carichi radiali in servizio continuativo verificare i valori delle tabelle prestazionali calcolati in funzione della carcassa, dell'albero e dei cuscinetti.

(*Fa) Valore massimo ammissibile dal riduttore con cuscinetti a rulli conici. Con cuscinetti a sfere non sono ammessi carichi assiali. Le grandezze 041-051-061 nella versione STANDARD sono forniti con cuscinetti a sfere.

2.4 LUBRIFICAZIONE

2.4.1 Informazioni

Nei casi con temperature ambiente non previste in tabella contattare il ns. Servizio Tecnico. In caso di temperature inferiori a -30°C o superiori a 60°C occorre utilizzare anelli di tenuta con mescole speciali. Per i campi di funzionamento con temperature inferiori a 0°C occorre considerare quanto seque:

- 1. I motori devono essere idonei al funzionamento con temperatura ambiente prevista.
- 2. La potenza del motore elettrico deve essere adeguata al superamento delle maggiori coppie di avviamento richieste.
- 3. Nel caso di variariduttori con cassa in ghisa prestare attenzione ai carichi d'urto in quanto la ghisa può presentare problemi di fragilità a temperature inferiori ai -15°C.
- 4. Durante le prime fasi di servizio possono insorgere problemi di lubrificazione causa l'elevata viscosità che assume l'olio e quindi è opportuno procedere ad alcuni minuti di funzionamento a "vuoto".

Il cambio olio (prodotti NON Atex) deve essere eseguito dopo circa 10.000 ore (5.000 per il variatore)/2 anni di funzionamento, questo periodo è in funzione del tipo di servizio e dell'ambiente in cui opera il riduttore. Per i gruppi forniti senza tappi per l'olio la lubrificazione si intende permanente e quindi non hanno necessità di alcuna manutenzione.

2.4.2 Lubrificanti

Specifiche dei lubrificanti consigliati da Motovario.

I gruppi TX002 ÷ 010 ed S003 ÷ 100 sono forniti con olio ENI BLASIA 32, salvo diversa richiesta.

I gruppi H032/3 ÷ 101/2/3 ed H121 sono forniti con olio ENI BLASIA 220, salvo diversa richiesta.

I gruppi H122/3 sono forniti privi di lubrificante.

I gruppi NMRV030 ÷ 150 e NMRV-P063 ÷ 110 sono forniti con olio ENI TELIUM VSF320, salvo diversa richiesta.

	TX002 ÷ 010 S003 ÷ 100	HA30 H030 HR04	NMRV030 ÷ 150 NMRV-P063 ÷ 110	
	Olio minerale	Olio m	inerale	Olio sintetico
*T _{amb} °C ISO	(-10) ÷ (+40) ISO VG32	(-5) ÷ (+40) ISO VG220	(-15) ÷ (+25) ISO VG150	(-25) ÷ (+50) ISO VG320
ENI	BLASIA 32	BLASIA 220	BLASIA 150	TELIUM VSF320
SHELL	SPIRAX S3 ATF MD3	OMALA S2 G 220	OMALA S2 G 150	OMALA S4 WE320
KLUBER	-	Kluberoil GEM 1-220N	Kluberoil GEM 1-150N	Klubersynth GH 6-320
MOBIL	ATF 220	MOBILGEAR 600 XP220	MOBILGEAR 600 XP150	SHC 632
CASTROL	DEXRON II	ALPHA SP 220	ALPHA SP 150	ALPHASYN PG320
ВР	AUTRAN DX III	ENERGOL GR-XP220	ENERGOL GR-XP150	ENERGOL SG-XP320
PETRONAS	TUTELA TRANSMISSION GI/A	GEAR MEP 220	GEAR MEP 150	GEAR SYN PAG 320

2.4 LUBRIFICAZIONE

2.4.3 Quantità

- Tutti i variatori vengono forniti completi di olio per le posizioni di piazzamento B3-B5. Per diverse posizioni di piazzamento occorre specificare in fase di ordine.
- Nel caso di rabbocchi o quando il gruppo viene fornito in versione aperta per il riempimento attenersi ai tipi raccomandati in tabella e alle corrette quantità utilizzando la spia di livello. Verifica del livello da eseguirsi a variatore fermo.
- Per tutti i riduttori della serie HA... a 2, 3 stadi e per i riduttori serie H a 1, 2, 3 stadi occorre sempre specificare la posizione di montaggio prevista.
- I riduttori della serie HA.. a 1, 2, 3 stadi in tutte le grandezze, serie HR... a 1 stadio nelle grandezze 040, 050, 060 e serie H... a 2, 3 stadi nelle grandezze 030, 040, 050 vengono forniti completi di lubrificante, sono sprovvisti dei tappi olio e non hanno necessità di alcuna manutenzione.
- I riduttori della serie HR... a 1 stadio nelle grandezze 080, 100, 125 e serie H... a 2, 3 stadi nelle grandezze 060, 080, 100 vengono forniti completi di lubrificante e dei tappi olio necessari a garantire la corretta lubrificazione nella posizione di montaggio richiesta.
- I riduttori della serie H... a 2, 3 stadi nelle grandezze 125 vengono forniti privi di lubrificante e completi dei tappi olio
 necessari a garantire la corretta lubrificazione nella posizione di montaggio richiesta. Il riempimento di lubrificante
 può essere comunque eseguito a richiesta, in questo caso si raccomanda, effettuata l'installazione, di sostituire il
 tappo chiuso utilizzato per il trasporto con il tappo di sfiato fornito a corredo. Quando il riduttore viene fornito senza
 olio sarà corredato da apposita etichetta da compilare.
- I riduttori della serie NMRV, NMRV-P delle gr. 030 040 050 063 075 090 105 110 130 150 vengono forniti completi di lubrificante a vita, olio a base sintetica, ENI TELIUM VSF. Possono essere montati in tutte le posizioni di montaggio previste a catalogo, tranne le gr. NMRV 090 110 e NRV 075 090 110 per la quale occorre specificare la posizione di montaggio prevista.
- I riduttori della serie NMRV per le gr. 130 e 150 occorre sempre specificare la posizione di montaggio, se questo non avviene i riduttori vengono forniti con le q.tà di olio relative alla pos. B3.
- I riduttori della serie NMRV per le gr. 130 e 150 sono provvisti dei tappi di carico/sfiato, livello e scarico olio.

Si raccomanda, effettuata l'installazione, di sostituire il tappo chiuso, utilizzato per il trasporto, con il tappo di sfiato fornito a corredo.

Le quantità di olio in tabella (litri ~) sono solo indicative e per il corretto riempimento si dovrà fare riferimento al tappo di livello o all'astina di livello, se presente. Eventuali scostamenti di livello possono dipendere da tolleranze costruttive ma anche dalla posizione di montaggio del gruppo o dal piano di montaggio presso cliente. Per tale motivo è opportuno che il cliente verifichi e, se necessario, ristabilisca il livello a gruppo installato.

TX	002	005	010
B5 - B6 - B7	O,11	0,15	0,4
B8 - V1 - V5	0,3	0,5	0,9
V3 - V6	0,3	0,5	0,9

Var S	003	005	010	020	030/050	100
B3 - B5 - B6 B8	O,17	0,24	0,4	0,7	1,4	2,3
V1 - V5	0,24	0,4	0,8	1,2	2,5	4,1
V3 - V6	0,26	0,4	0,4	0,7	2,5	3,7

H - CH	HA41	CHA41	A51	A61	A32	A42	A52	A62	A33	A43	A53	A63
B3-B5												
B8							1,2	1,9			1,9	2,4
B6-B7	0,23	0,13	0,25	0,62	0,68	0,7			1,1	1,16		
V5-V1							1.6	2.1			2.5	7 1
V6-V3							1,6	2,1			2,5	3,1

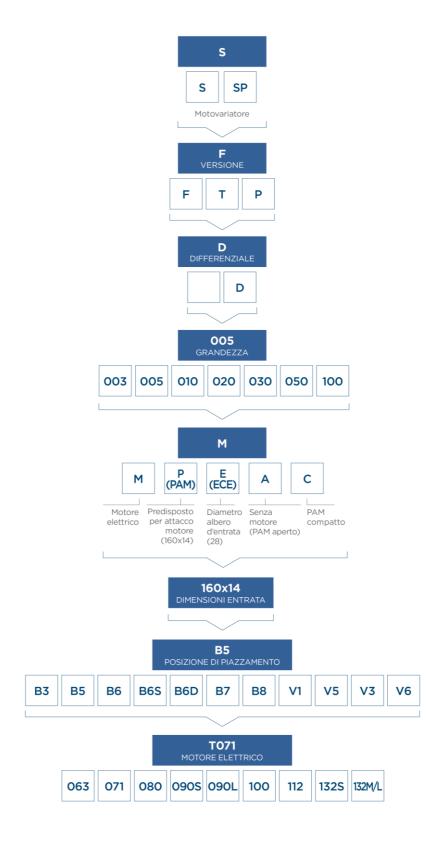
HR - CHR	041	051	061	081	101	121	041M	051M	061M	081M	101M	121M
B3-B5	0,5	0,7	0,7	1,45	3,5	4,7	0,5	0,5	0,5	1,5	3,5	3,9
B5R	0,5	0,5	0,5	1,5	3,5	3,9	-	-	-	-	-	-
В8	0,5	0,5	0,5	1,5	3,5	3,9	0,5	0,7	0,7	1,45	3,5	4,7
B6-B7	0,5	0,7	0,7	1,5	3,5	4,1	0,5	0,7	0,7	1,5	3,5	4,1
V5-V1	0,5	0,7	0,9	1,5	3,5	4,7	0,5	0,7	0,9	1,5	3,5	4,7
V6-V3	0,5	0,7	0,7	1,5	3,5	4,1	0,5	0,7	0,7	1,5	3,5	4,1

2.4 LUBRIFICAZIONE

н - сн	032/033	042/043	052/053	062/063	082/083	102/103	122/123
B3-B5	0,8	1,2	1,4	2,4	4,5	8,1	12,5
B8	0,85	1,2	1,4	3,1	5	8,9	12,5
B6-B7	1	1,2	1,8	3	4,6	8,4	12,1
V5-V1	1,3	1,75	2,15	3,9	7,6	12,7	20,5
V6-V3	1,2	1,7	2,1	4,4	7,5	14,2	21

NMRV	030	040	050	130	150
B3				4,5	7
B8				3,3	5,1
B6-B7	0,04	0,08	0,15	3,5	5,4
V5				4,5	7
V6				3,3	5,1

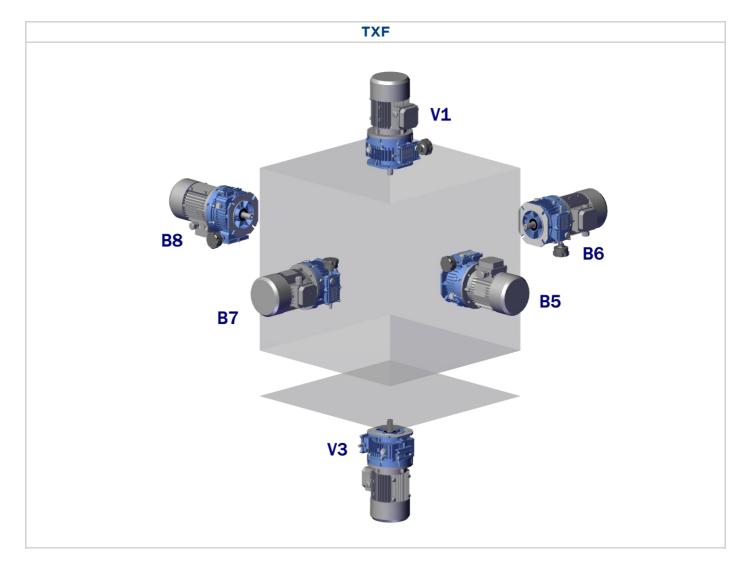
NMRV-P	063	075	090	110
В3				
B8				
B6-B7	0,33	0,55	1,15	1,6
V5				
V6				

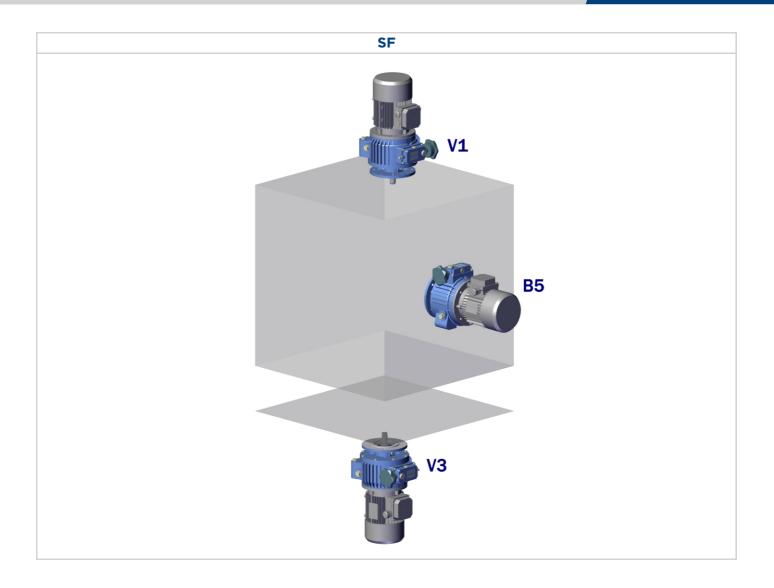

MOTOVARIATORI

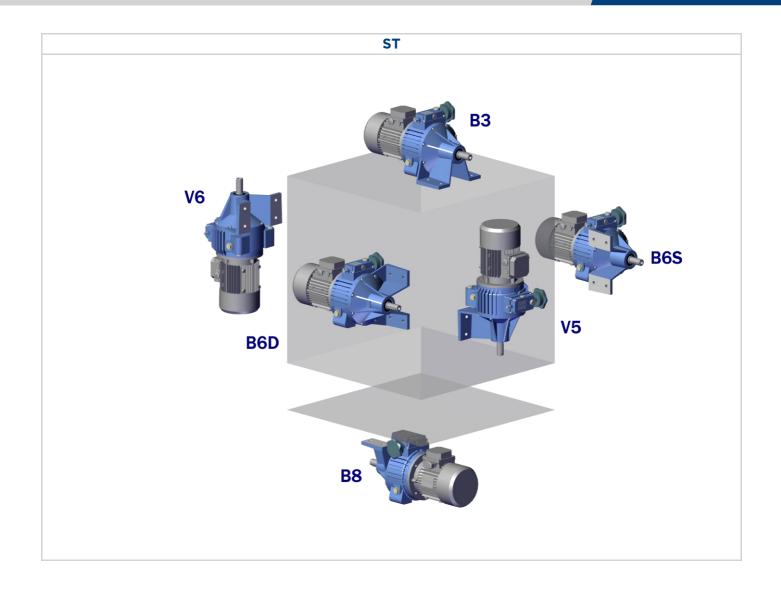
4.1.1 Designazione

4.1.2 Versioni

ENTRATA

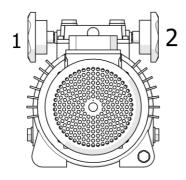

TXF - Motore elettrico	
S - Motore elettrico	
TXF - PAM compatto	
S - PAM compatto	
S - Predisposto per attacco motore	
S - Albero d'entrata	

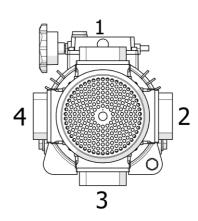

USCITA


TXF	
SF	
ST	
SP	
SPF	

4.2.1 Posizioni di montaggio

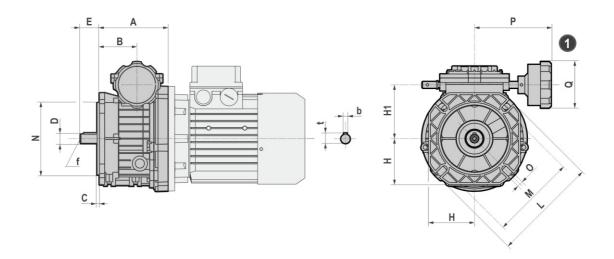
La posizione di montaggio identifica l'orientamento del variatore nello spazio. Quando possibile privilegiare la posizione di montaggio B3/B5, in quanto da un punto di vista tecnico garantisce minor sbattimento d'olio, miglior lubrificazione e minor riscaldamento.




4.2.2 Posizione morsettiera

Nel caso di particolari esigenze specificare in fase di ordine la posizione della morsettiera come da schema. Se non diversamente specificato, il gruppo viene fornito con morsettiera in pos.1.

Volantino di comando



Posizione morsettiera

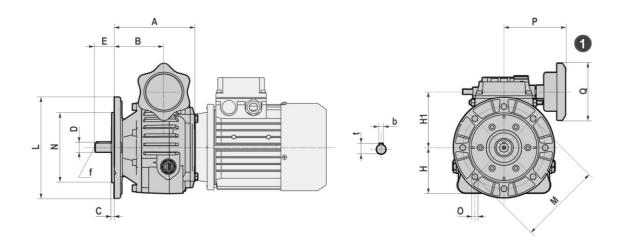
5.1 TXF CATALOGO TECNICO

5.1.1 TXF

TXF	Α	В	С	D j6	E	Н	H1	L	М
002/063	82,5	40	3	11 (14)	23 (30)	62,5	69	140	115
005/071	103,5	57	3,5	14 (19)	30 (40)	70	82	160	130
005/080	114,5	57	3,5	14 (19)	30 (40)	70	82	160	130
010/080	131,5	68,5	3,5	19 (24)	40 (50)	90	103	200	165
010/090	131,5	68,5	3,5	19 (24)	40 (50)	90	103	200	165

TXF	N f8	0	Р	Q	b	t	f
002/063	95	9	116,5	71	4 (5)	12,5 (16)	- (M6)
005/071	110	9	116,5	71	5 (6)	16 (21,5)	M6 (M6)
005/080	110	9	116,5	71	5 (6)	16 (21,5)	M6 (M6)
010/080	130	11	126,5	71	6 (8)	21,5 (27)	M6 (M8)
010/090	130	11	126,5	71	6 (8)	21,5 (27)	M6 (M8)

5.1 TXF CATALOGO TECNICO

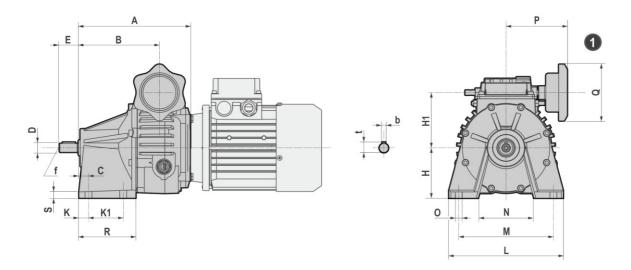

5.1.2 Pesi

Nelle tabelle vengono riportati le masse indicative dei riduttori completi di lubrificante. *Peso senza motore

TXF	-kg
TXF002/063	2,3
TXF005/071	3,3
TXF005/080	4
TXF010/080	6,1
TXF010/090	6,7

5.2 S CATALOGO TECNICO

5.2.1 SF

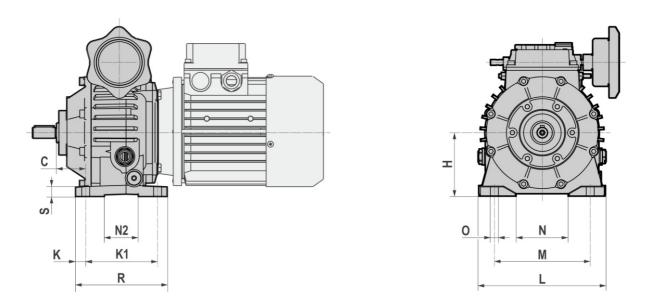


SF	Α	В	С	D	E	Н	H1	L
003	103	65,5	3	11 j6	23	58	75	140
003	103	65,5	3,5	14 j6	30	56	/5	160
005	127,5	70 F	3,5	14 j6	30	72,5	88	160
005	127,5	78,5	3,5	19 j6	40	72,5	00	200
010	151	04.5	3,5	19 j6	40	00	107	160
010	151	94,5	3,5	24 j6	50	90	107	200
020	173	105,5	3,5	24 j6	50	108	126	200
020	1/3	105,5	4	28 j6	60	100	126	250
030/050	208	123,5	4	28 j6	60	134	158,5	250
030/030	200	123,5	4	38 k6	80	154	150,5	300
100	266	164,5	4	38 k6	80	165	205.5	300
100	200	164,5	5	42 k6	80	105	205,5	350
SF	М	N	0	Р	Q	b	t	f
003	115	95	9	97	90	4	12,5	M4

3F	I 111	l IN	0	F .	GZ .	0	L L	
007	115	95	9	0.7	00	4	12,5	M4
003	130	110	9	97	90	5	16	M5
005	130	110	9	97	90	5	16	M5
005	165	130	11	97	90	6	21,5	M6
010	130	110	9	107	90	6	21,5	M6
010	165	130	11	107	90	8	27	M8
020	165	130	11	117	90	8	27	M8
020	215	180	14	117	90	8	31	M10
030/050	215	180	14	154	120	8	31	M10
030/030	265	230	14	154	120	10	41	M12
100	265	230	14	184	120	10	41	M12
100	300	250	18	104	120	12	45	M12

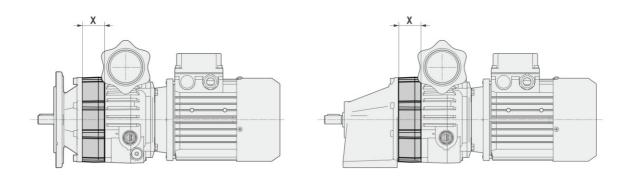
5.2 S CATALOGO TECNICO

5.2.2 ST


ST	Α	В	С	D	E	Н	H1	ĸ	K1	L
007	171	07.5	10	11 j6	23	70	75	15	25	170
003	131	93,5	16	14 j6	30	70	75	15	25	130
005	177,5	128,5	16	14 j6	30	80	88	15	55	180
005	177,5	120,5	10	19 j6	40	00	00	15	55	100
010	213	156,5	19,5	19 j6	40	102	107	18,5	65	220
010	213	156,5	19,5	24 j6	50	102	107	10,5	65	220
020	251,5	10.4 5	25.5	24 j6	50	125	120	27.5	75	250
020	251,5	184,5	25,5	28 j6	60	125	126	23,5	/5	250
030/050	294,5	210,5	27	38 k6	80	150	158,5	25	85	310
100	353,5	252,5	32	42 k6	80	190	205,5	29	120	384

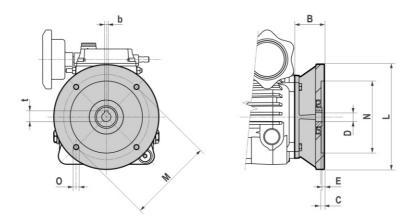
ST	М	N	0	P	Q	R	S	b	t	f
003	95	60	9	97	90	60	8	4	12,5	M4
003	95	60	9	97	90	60	0	5	16	M6
005	150	90	11	97	90	90	10	5	16	M6
003	150	90	"	97	90	90	10	6	21,5	M6
010	165	108	11	107	90	110	12	6	21,5	M6
010	103	108	"	107	90	110	12	8	27	M8
020	185	118	14	117	90	130	14	8	27	M8
020	163	110	14	117	90	130	14	8	31	M8
030/050	240	149	18	154	120	150	16	10	41	M10
100	295	193	20	184	120	186	20	12	45	M10

CATALOGO TECNICO


5.2.3 SP

5.2 S

SP	С	н	K	K1	L	М	N	N2	0	R	S
005	36,5	80	12,5	90	155	120	65	42	10	115	12
010	42,5	102	12,5	110	200	150	86	75	11	135	13
020	55,5	125	12,5	115	235	205	103	90	11	140	16
030/050	25,5	150	15	220	290	255	118	140	14	250	20
100	55,5	180	25	255	365	320	140	175	18	305	25


5.2.4 S.D

X
37,5
33,5
37
54
54

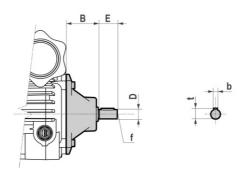
5.2 S CATALOGO TECNICO

5.2.5 S - PAM



S	В	С	D	Е	L	М	N	0	b	t
007	F0	4	14	2	105	85	70	6,5	5	16,3
003	50	4	11	2	140	115	95	M8	4	12,8
		4	19		120	100	80	6,5	6	21,8
005	45	4,5	14	3	160	130	110	M8	5	16,3
		4,5	19		200	165	130	M10	6	21,8
010	62	5	19	3,25	200	165	130	M10	6	21,8
010	62	5	24	3,25	200	165	130	IMIO	8	27,3
020	63	4,5	24	1,9	200	165	130	M10	8	27,3
020	73	5	28	1,9	250	215	180	M12	8	31,3
030/050	72,5	5	28	2	250	215	180	M12	8	31,3
030/030	87,5	5	38	2	300	265	230	IMIZ	10	41,3
100	95	5,5	38	5	300	265	230	13,5	10	41,3
100	125	6	42	25	350	300	250	M16	12	45,3

CATALOGO TECNICO


5.2.6 S - PAM C

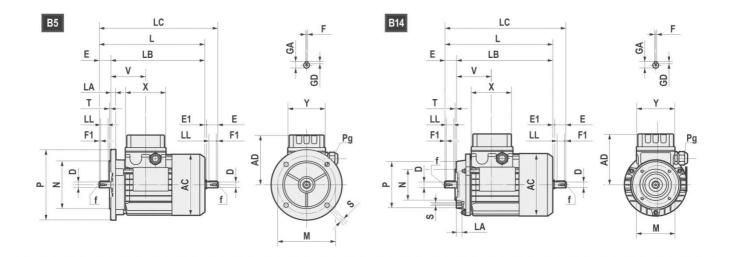
5.2 S

S	B1	С	D1	L	М	N	0	b	t
003	17,5	4	11	140	115	95	M8	4	12,8
005	10	4,5	14	160	130	110	M8	5	16,3
010	11	6	19	200	165	130	M10	6	21,8
020	/	/	24	200	165	130	M10	8	27,3
030/050	/	/	28	250	215	180	M12	8	31,3
100	/	/	38	300	265	230	M12	10	41,3

5.2.7 S - ECE

S	В	D	E	f	b	t
003	50	11	23	M4	4	12,5
005	50	14	30	M6	5	16
010	65	19	40	M6	6	21,5
020	70	24	50	M8	8	27
030/050	94,5	28	60	M8	8	31
100	110	38	80	M10	10	41

CATALOGO TECNICO

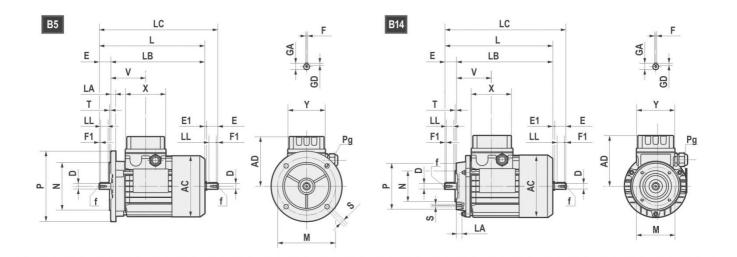

5.2.8 Pesi

5.2 S

Nelle tabelle vengono riportati le masse indicative dei riduttori completi di lubrificante. *Peso senza motore

SF	-kg
003	2,7
005	5,9
010	11,4
020	22,3
030/050	40,5
100	73
ST	-kg
ST 003	-kg 3
003	3
003 005	3 8,7
003 005 010	3 8,7 16,1

5.3.1 Motori elettrici



	AC	AD	L	LB	LC	Х	Υ	V	D	Е	E1	f	F1	GA	F	GD
63	121	104	211	188	235,5	80	74	69	11 j6	23	1,5	M4x10	2,5	12,5	4	4
71	139	112	238,5	208,5	271	80	74	74,5	14 j6	30	2,5	M5x12.5	3	16	5	5
80	158	122	272,5 *(296)	232,5 *(256)	314 *(337)	80	74	78	19 j6	40	1,5	M6x16	5	21,5	6	6
905	173	146	298 *(331)	248 *(281)	349,5 *(381)	98	98	89,5	24 j6	50	1,5	M8x19	5	27	8	7
90L	173	146	323 *(356)	273 *(306)	374,5 *(408)	98	98	89,5	24 j6	50	1,5	M8x19	5	27	8	7
100	191	155	368	308	431,5	98	98	97,5	28 j6	60	3,5	M10x22	7,5	31	8	7
112	211	170	382,5 *(408)	322,5 *(348)	447 *(472)	98	98	100	28 j6	60	3,5	M10x22	7,5	31	8	7
1325	249	195	452	372	536,5	118	118	115,5	38 k6	80	4	M12x28	10	41	10	8
132L	249	195	490	410	574,5	118	118	115,5	38 k6	80	4	M12x28	10	41	10	8
160S	249	195	520	410	/	118	118	115,5	42k6	100	/	M16x36	10	45	12	8

^{*}TP80B4,TP90S4, TP90L4, TP90S6, TP112M4, TP112M6

B5	М	N	Р	LA	S	T
63	115	95	140	10	9	3
71	130	110	160	10	9,5	3,5
80	165	130	200	12	11	3,5
90	165	130	200	12	11	3,5
100	215	180	250	15	14	4
112	215	180	250	14,5	14	4
132	265	230	300	20	14	3,5
160	300	250	350	13	18,5	3,5

	B14	М	N	P	LA	S	T
	63	75	60	90	10	M5	2,5
	71	85	70	105	10,5	M6	2,5
	80	100	80	120	10,5	M6	3
	90	115	95	140	11,5	M8	3
•	100	130	110	160	15	M8	3,5
	112	130	110	160	11,5	M8	3,5
	132	165	130	200	20,5	M10	3,5
1	160	215	180	250	-	M12	4

		AC	AD	L	LB	Х	D	E	f	GA	F	GD	LL	Pg	9
160M	2-4-6	314	251	600	490	158	42	110	M16	45	12	8	90	2-M40x1,5	1-M16x1,5
160L	2-4-6	314	251	645	535	158	42	110	M16	45	12	8	90	2-M40x1,5	1-M16x1,5
180M	2-4	355	267	680	570	158	48	110	M16	51,5	14	9	100	2-M40x1,5	1-M16x1,5
180L	4-6	355	267	720	610	158	48	110	M16	51,5	14	9	100	2-M40x1,5	1-M16x1,5
200L	2-4-6	397	300	785	675	187	55	110	M20	59	16	10	100	2-M50x1,5	1-M16x1,5
2255	4	446	325	820	680	187	60	140	M20	64	18	11	125	2-M50x1,5	1-M16x1,5
225M	2	446	325	815	705	187	55	110	M20	59	16	10	100	2-M50x1,5	1-M16x1,5
225M	4-6	446	325	845	705	187	60	140	M20	64	18	11	125	2-M50x1,5	1-M16x1,5
250M	2-4-6	485	360	910	770	238	60	140	M20	64	18	11	125	2-M63x1,5	1-M16x1,5
250M	2-4-6	485	360	910	770	238	65	140	M20	69	18	11	125	2-M63x1,5	1-M16x1,5
2805	2-4-6	547	390	970	830	238	65	140	M20	69	18	11	125	2-M63x1,5	1-M16x1,5
2805	2-4-6	547	390	970	830	238	75	140	M20	79,5	20	12	125	2-M63x1,5	1-M16x1,5
280M	2-4-6	547	390	1025	885	238	65	140	M20	69	18	11	125	2-M63x1,5	1-M16x1,5
280M	2-4-6	547	390	1025	885	238	75	140	M20	79,5	20	12	125	2-M63x1,5	1-M16x1,5

B5	М	N	P	LA	S	T
160	300	250	350	13	19	5
180	300	250	350	15	19	5
200	350	300	400	17	19	5
225	400	350	450	20	19	5
250	500	450	550	22	19	5
280	500	450	550	22	19	5
		.50	230		.5	

5.3.2 Motori ad efficienza standard (TS), alta (TH) e premium (TP)

I motori trifase a singola polarità Motovario sono disponibili in tre versioni differenti (IE1-IE2-IE3) in accordo alla norma IEC 60034-30-1 (vedi tabella); Il rendimento è calcolato secondo il metodo prescritto dalla norma IEC 60034-2-1.

- 1. IE1: Serie TS ad efficienza standard
- 2. IE2: Serie TH ad alta efficienza
- 3. IE3: Serie TP ad efficienza premium

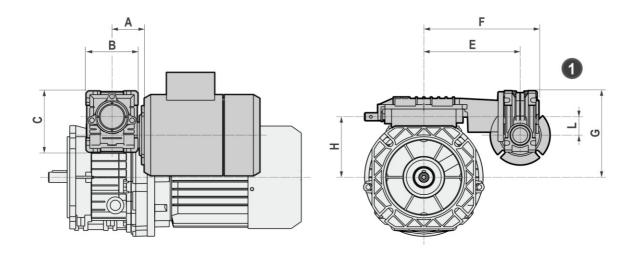
Tabella disponibilità commerciale Motovario

		١	LIVELLI DI EFFICIEN	IZA
POTENZA NOMINALE [kW]	POLI	IE1	IE2	IE3
0,09 ≤ Pn < 0,75	2 - 4 - 6	TS-TBS	-	-
0,75 ≤ Pn ≤ 11	2 - 4	TBS	-	-
0,75 ≤ Pn ≤ 5,5	6	TBS	ТН-ТВН	TP-TBP
0,75 ≤ Pn ≤ 9,2	2 - 4	-	ТН-ТВН	-
0,75 ≤ Pn ≤ 7,5	2 - 4	-	-	TP-TBP
7,5 ≤ Pn ≤ 22	6	TBS (*)	-	TP
11 ≤ Pn ≤ 90	4	-	-	TP
15 ≤ Pn ≤ 37	2	TBS (*)	-	TP
15 ≤ Pn ≤ 55	4	TBS (*)	-	-

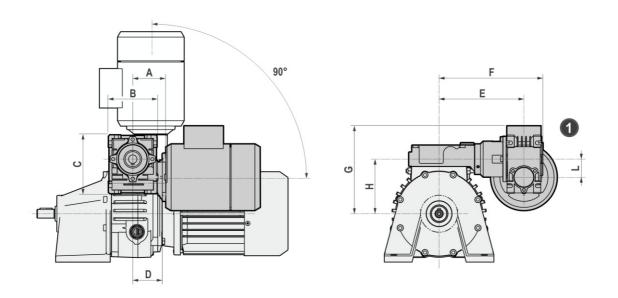
^(*) Serie disponibile su richiesta.

5.3.3 Potenza nominale - [kW]

	63A	63B	63C	71A	71B	71C	80A				80B			
Poli	TS	TH	TP	TS	TH	TP								
2	0,18	0,25	0,37	0,37	0,55	-	-	0,75	0,75	-	1,1	1,1		
4	0,12	0,18	0,22	0,25	0,37	0,55	0,55	-	-	-	0,75	0,75		
6	0,09	0,12	0,15	0,18	0,25	0,37	0,37	-	-	0,55	-	-		


	9	90S	90L		100LR	100L	100	DLA	112MR	112MS	112MA	112M
Poli	TH	TP	TH	TP	TP	TP	TH	TP	TP	TP	TH	TP
2	1,5	1,5	2,2	2,2	-	3	3	-	-	-	4	4
4	1,1	1,1	1,5	1,5	-	-	2,2	2,2	2,2	3	4	4
6	-	0,75	0,75	-	1,1	1,5	1,1	-	-	-	2,2	2,2

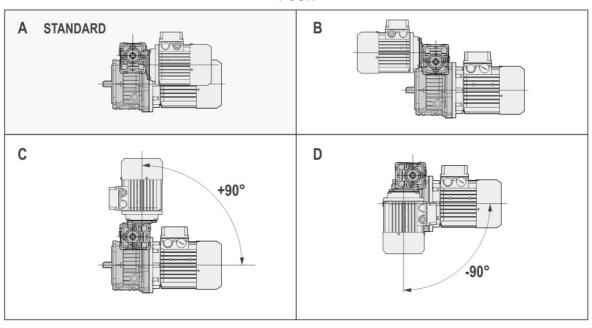
	112MR	112MS	132S	132SA	132MS	132SB	132M	132	MA	132	МВ
Poli	TP	TP	TP	TH	TP	TH	TP	TH	TP	TH	TP
2	-	-	5,5	5,5	-	7,5	7,5	9,2	-	-	-
4	2,2	3	-	5,5	5,5	-	7,5	7,5	-	9,2	-
6	-	-	3	3	-	-	-	4	4	5,5	5,5


	160M	160MA	160MB	160L	160LA	180M	180L
Poli	TP	TP	TP	TP	TP	TP	TP
2	-	11	15	18,5	-	22	-
4	-	11	-	-	15	18,5	22
6	7,5	-	_	11	-	-	15

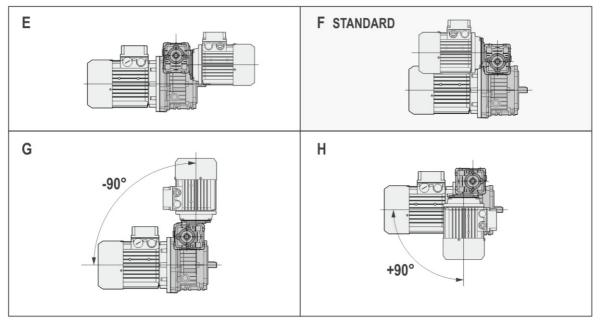
	200L	200LA	200LB	225S	225M	250M	2805	280M
Poli	TP	TP	TP	TP	TP	TP	TP	TP
2	-	30	37	-	-	-	-	-
4	30	-	-	37	45	55	75	90
6	-	18,5	22	-	-	-	-	-

6.1 SERVOCOMANDO ELETTRICO

TXF	Α	В	С	E	F	G	н	L
002	45	70	83	130	155	104	69	25
005	45	70	83	130	155	117	82	25
010	45	70	83	140	165	138	103	25


S	Α	В	С	D	Е	F	G	Н	L
005	55	80	97	49	140,5	172	130,5	90,5	30
010	55	80	97	56,5	150,5	182	148,5	108,5	30
020	55	80	97	67,5	160,5	192	167,5	127,5	30
030/050	55	80	97	84,5	164	195,5	198,5	158,5	30
100	55	80	97	102	204	235,5	245,5	205,5	30

TXF002-005-010 / S005-010-020-030-050 P1=0.09 kW/4 - i=30


\$100 P1=0.18 kW/4 - i=30

6.1 SERVOCOMANDO ELETTRICO

POS.2

6.1 SERVOCOMANDO ELETTRICO

TXF	Α	В	С	D	Е	F	G	Н
TXF002/063	1	1	1	1	1	1	1	1
TXF005/071	1	·	1	1	1	·	✓	-
TXF005/080	-	·	1	1	1	·	✓	-
TXF010/080	✓	·	•	-	✓	·	✓	-
TXF010/090	✓	•	✓	-	1	✓	✓	-
			_	_			_	
S	Α	В	С	D	E	F	G	Н
S005/071	· ·	1	1	-	-	1	✓	1
S010/080	·	/	1	-	1	1	✓	-
S010/090	1	1	/	-	·	✓	✓	-
S020/090	✓	1	✓	-	•	✓	✓	-
S030/100	✓	1	✓	-	✓	✓	✓	-
S050/112	✓	✓	✓	-	✓	✓	✓	-
S100/132	✓	✓	✓	-	✓	✓	✓	-
S005-PAM120	✓	1	✓	-	-	✓	✓	✓
S005-PAM140	✓	✓	✓	-	-	✓	✓	✓
S005-PAM160	✓	✓	✓	-	-	✓	✓	✓
S005-PAM200	-	1	•	-	-	✓	✓	✓
S010-PAM200	✓	✓	✓	-	✓	✓	✓	-
S020-PAM200	✓	·	•	-	✓	•	✓	-
S020-PAM250	✓	1	•	-	✓	✓	✓	-
S030-PAM250	✓	✓	✓	-	✓	✓	✓	-
S030-PAM300	✓	✓	•	-	✓	•	✓	-
S050-PAM250	✓	·	✓	-	✓	✓	✓	-
S050-PAM300	•	1	•	-	1	•	1	-
S100-PAM300	✓	✓	•	-	✓	•	✓	-
S100-PAM350	✓	·	1	-	✓	·	•	-

[✓] Piazzamento possibile.

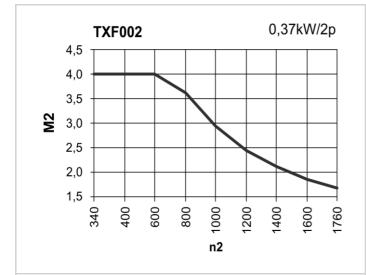
Il motore pilota deve essere alimentato dal motore principale in quanto la regolazione dei giri deve avvenire a motore principale in moto.

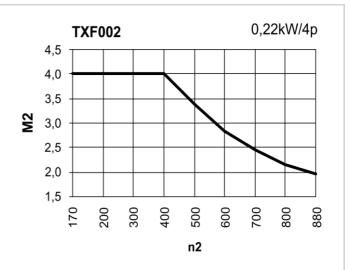
⁻ Piazzamento non possibile.

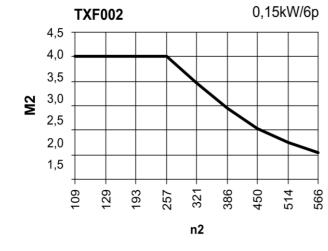
6.2 ALTRI ACCESSORI & OPZIONI

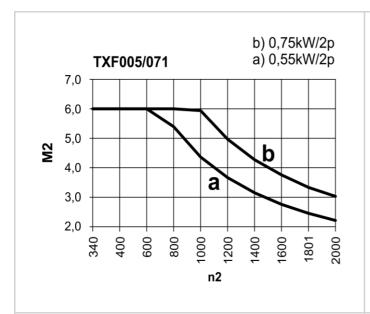
I seguenti accessori sono fornibili a richiesta (richiedere schede tecniche):

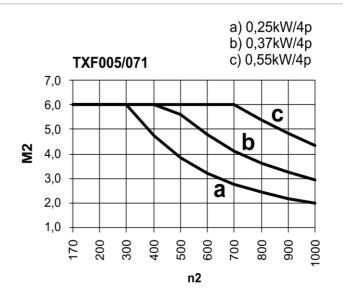
- Indicatore gravitazionale;
- Rinvio angolare;
- Finecorsa elettrico;
- Sonda;
- Tachimetro digitale.

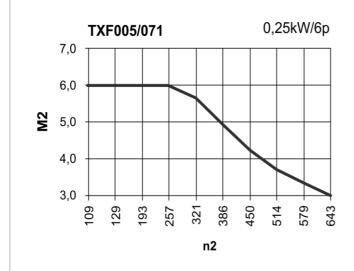

7.1.1 TXF

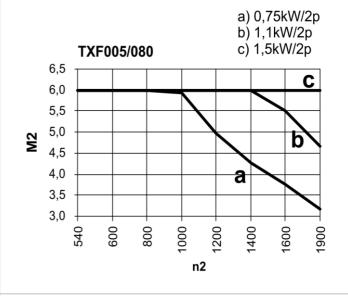

P1 (kW)			n1 1/min	n2 (a) 1/min	n2 (b) 1/min	M2 (a) Nm	M2 (b) Nm	Fr2 (a) N	Fr2 (b) N
0,15	TXF002	63C6	900	566	109	2,1	4	320	550
0,22	TXF002	63C4	1400	880	170	2	4	270	480
0,25	TXF005	71A4	1400	1000	170	2	6	580	1050
0,25	TXF005	71B6	900	643	109	3	6	670	1050
0,37	TXF002	63C2	2800	1760	340	1,7	4	220	380
0,37	TXF005	71B4	1400	1000	170	3	6	580	1050
0,55	TXF005	71B2	2800	2000	340	2,2	6	460	800
0,55	TXF005	71C4	1400	1000	170	4,4	6	580	1050
0,55	TXF005	80A4	1400	950	270	4,6	6	590	900
0,55	TXF005	80B6	900	611	174	6	6	680	1050
0,55	TXF010	80A4	1400	1000	170	4,4	12	650	1150
0,55	TXF010	80B6	900	643	109	6,6	12	750	1350
0,75	TXF005	71C2	2800	2000	340	3	6	460	800
0,75	TXF005	80A2	2800	1900	540	3,2	6	480	710
0,75	TXF005	80B4	1400	950	270	6	6	590	900
0,75	TXF010	80B4	1400	1000	170	6	12	650	1150
0,75	TXF010	90S6	900	611	174	9,5	12	760	1140
0,92	TXF010	80C4	1400	1000	170	7,2	12	650	1150
1,1	TXF005	80B2	2800	1900	540	4,7	6	480	710
1,1	TXF010	80B2	2800	2000	340	4,4	12	510	930
1,1	TXF010	9054	1400	950	270	9,1	12	660	900
1,5	TXF005	80C2	2800	1900	540	6	6	480	710
1,5	TXF010	80C2	2800	2000	340	6	12	510	930
1,5	TXF010	90S2	2800	1900	540	6,3	12	520	790
1,5	TXF010	90L4	1400	950	270	12	12	660	900
2,2	TXF010	90L2	2800	1900	540	9,3	12	480	710

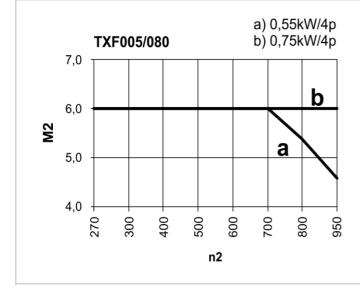

⁽a) Valori relativi alla velocità max.

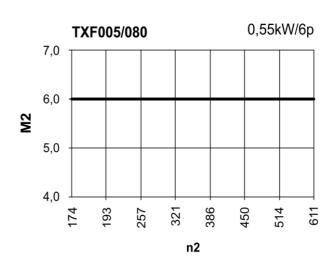

⁽b) Valori relativi alla velocità min.

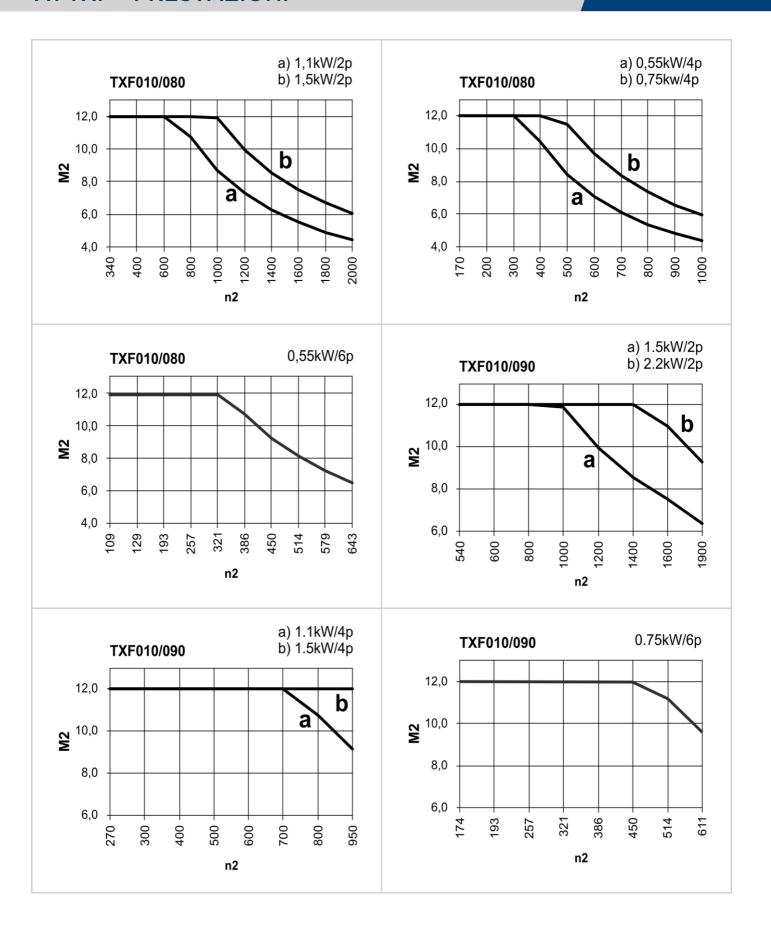

7.1.2 TXF - Curve prestazioni







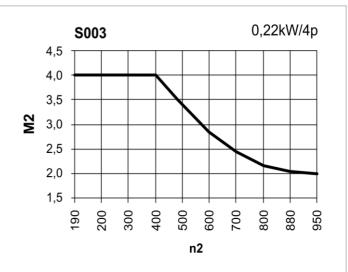


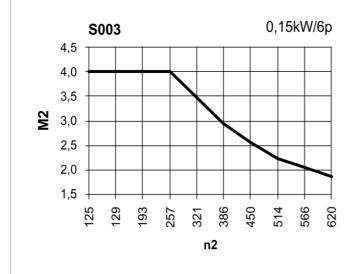


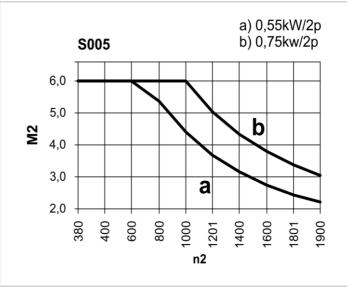
7.2.1 S

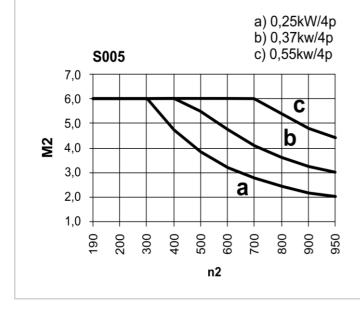
P1 (kW)			n1 1/min	n2 (a) 1/min	n2 (b) 1/min	M2 (a) Nm	M2 (b) Nm	Fr2 (a) N	Fr2 (b) N
0,15	S003	63C6	900	620	125	2,1	4	500	700
0,22	S003	63C4	1400	950	190	2	4	440	760
0,25	S005	71A4	1400	950	190	2	6	802	1120
0,25	S005	71B6	900	610	122	3	6	930	1120
0,37	S003	63C2	2800	1900	380	1,7	4	340	670
0,37	S005	71B4	1400	950	190	3	6	810	1120
0,55	S005	71B2	2800	1900	380	2,2	6	640	1120
0,55	S005	71C4	1400	950	190	4,4	6	720	1120
0,55	S010	80A4	1400	950	190	4,4	12	930	1910
0,55	S010	80B6	900	610	122	6,6	12	1080	1910
0,75	S005	71C2	2800	1900	380	3	6	640	1120
0,75	S010	80B4	1400	950	190	6	12	940	1640
0,92	S010	80C4	1400	950	190	7,5	12	870	1640
1,10	S010	80B2	2800	1900	380	4,4	12	740	1300
1,10	S020	9054	1400	1000	190	9	24	1130	1960
1,10	S020	90L6	900	660	122	13,5	24	1300	2290
1,50	S010	80C2	2800	1900	380	6	12	740	1300
1,50	S020	90S2	2800	2000	380	6	24	890	1560
1,50	S020	90L4	1400	1000	190	12	24	1130	1960
1,50	S030	100LA6	900	660	122	18	48	2570	4540
1,84	S020	90LL4	1400	1000	190	15	24	1050	1960
2,20	S020	90L2	2800	2000	380	9	24	890	1560
2,20	S030	100LA4	1400	1000	190	18	48	2240	3890
2,20	S050	112M6	900	660	122	27	64	2570	4540
3,00	S030	100LB4	1400	1000	190	24	48	2240	3890
4,00	S050	112M4	1400	1000	190	32	64	2240	3890
4,80	S050	112MS4	1400	1000	190	40	64	2010	3890
5,50	S100	132S4	1400	1000	190	44	144	2900	5050
5,50	S100	132M6	900	660	122	66	144	3330	5890
7,50	S100	132L4	1400	1000	190	60	144	2900	5050
9,20	S100	132M4	1400	1000	190	74	144	2900	5050

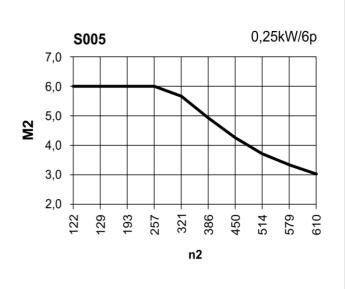
⁽a) Valori relativi alla velocità max.

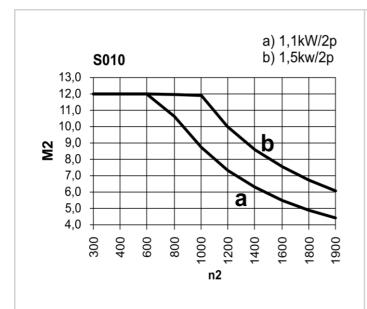

⁽b) Valori relativi alla velocità min.

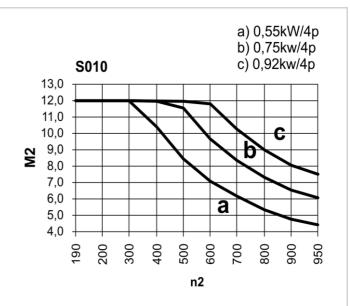

7.2.2 S.D

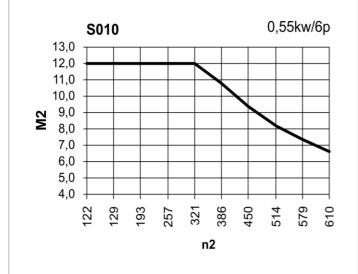

	n2 max 1/min	n2 min 1/min	M2 max Nm
SD005	610	0	6
SD005	950	0	6
SD005	1900	0	6
SD005	950	0	6
SD010	610	0	12
SD005	1900	0	6
SD010	950	0	12
SD010	950	0	12
SD010	1900	0	12
SD020	1000	0	24
SD020	660	0	24
SD010	1900	0	12
SD020	2000	0	24
SD020	1000	0	24
SD030	660	0	48
SD020	1000	0	24
SD020	2000	0	24
SD030	1000	0	48
SD050	660	0	64
SD030	1000	0	48
SD050	1000	0	64
SD050	1000	0	64
SD100	1000	0	144
SD100	660	0	144
SD100	1000	0	144
SD100	1000	0	144

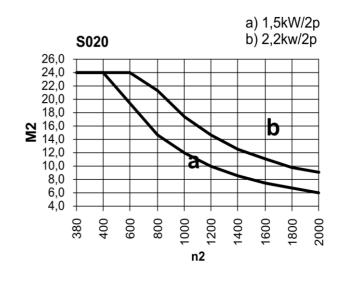

7.2.3 S - Curve prestazioni

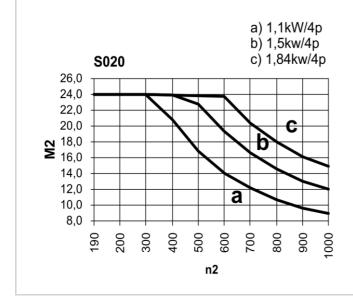


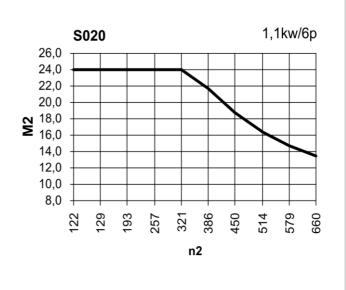


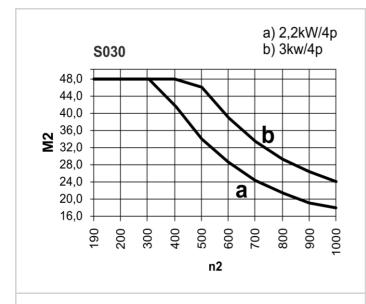


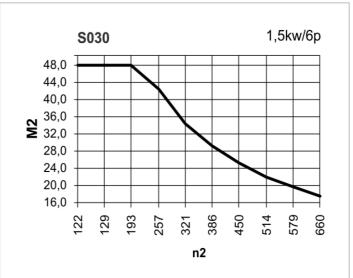


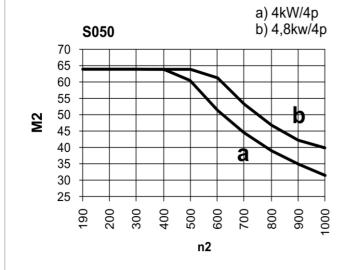


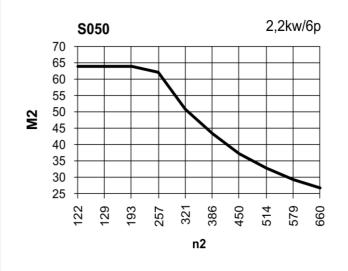


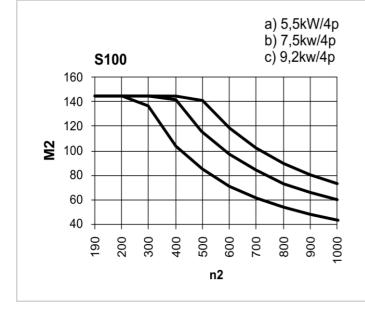


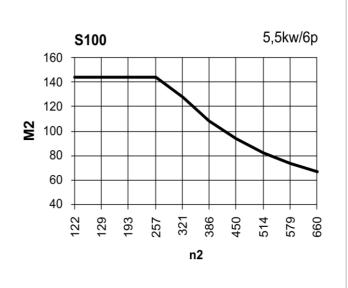


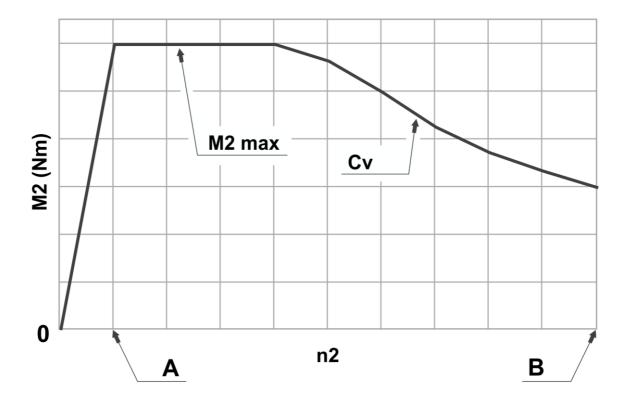












7.2.4 S.D - Curva di coppia con differenziale

La curva di coppia "Cv" del motovariatore con differenziale dal punto "n(b)" al punto "n(a)" corrisponde alla curva di coppia del corrispondente motovariatore senza differenziale. In corrispondenza del punto "n(b)" la curva di coppia del motovariatore con differenziale scende sino a 0, in questa area la prestazione del gruppo può non essere regolare e presentare problematiche di slittamento. Occorre pertanto verificare con estrema attenzione la coppia richiesta dalla macchina.