## Cuscinetti obliqui a sfere Super-precision serie 718 (SEA)





## Indice

| A Informazioni relative al prodotto                                                                                         |         | C Dati relativi al prodotto                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------|
| prodotto                                                                                                                    |         | Cuscinetti– dati generali       1         Dimensioni       1                                                       |
| Cuscinetti obliqui a sfere Super-<br>precision SKF serie 718 (SEA)                                                          | 3       | Dimensioni del raccordo                                                                                            |
| La gamma  Il design  Versioni disponibili dei cuscinetti.  Cuscinetti singoli e gruppi di cuscinetti appaiati  Applicazioni | 4 4 5   | Rigidezza assiale del cuscinetto                                                                                   |
| B Consigli                                                                                                                  |         | Materiali                                                                                                          |
| Scelta del cuscinetto                                                                                                       |         | Confezioni                                                                                                         |
| Disposizione di cuscinetti Cuscinetti singoli. Gruppi di cuscinetti. Tipo di disposizione                                   | 9<br>10 | Tabelle di prodotto                                                                                                |
| Lubrificazione                                                                                                              | 14      | Raggiungere il massimo livello in ambito di cuscinetti di precisione 30 Cuscinetti obliqui a sfere Super-precision |
|                                                                                                                             |         | SKF – the knowledge engineering company                                                                            |

## Cuscinetti obliqui a sfere Super-precision SKF serie 718 (SEA)

I requisiti di prestazione imposti ai cuscinetti dalle macchine utensili e da altre applicazioni di precisione sono decisamente impegnativi. Capacità ottimizzata di sopportare velocità elevate, alta precisione rotazionale, elevata rigidezza di sistema, minima produzione di calore e bassi livelli di rumorosità sono solo alcuni dei requisiti prestazionali richiesti.

Per soddisfare le esigenze delle applicazioni di precisione, che impongono una costante ottimizzazione dei livelli di prestazione, la SKF ha sviluppato dei cuscinetti Super-precision di nuova generazione.

I nuovi cuscinetti obliqui a sfere della serie 718 (SEA)<sup>1)</sup> sono caratterizzati da:

- capacità di sopportare velocità elevate
- elevata rigidità
- maggiore durata a fatica
- montaggio semplice
- ingombro radiale ridotto

I cuscinetti obliqui a sfere Super-precision serie 718 (SEA) consentono prestazioni ottimali nelle applicazioni in cui sono richiesti elevato livello di affidabilità ed estrema precisione. Questi cuscinetti sono particolarmente idonei per le applicazioni di macchine utensili, teste di foratura multi-mandrino, robot industriali e strumenti di misurazione.



1) Le denominazioni in parentesi, come mostrato qui, si riferiscono al prodotto equivalente della SNFA.

## La gamma

I cuscinetti obliqui a sfere Super-precision della serie 718 (SEA) sono disponibili, nella versione standard, come cuscinetti con sfere in acciaio e ibridi. Entrambi i tipi sono idonei per diametri albero nella gamma tra 10 e 160 mm e sono disponibili con due angoli di

I cuscinetti serie 718 (SEA), come tutti i cuscinetti obliqui a sfere, sono quasi sempre combinati con un secondo cuscinetto oppure utilizzati in gruppi, per sopportare i carichi assiali. I cuscinetti idonei per il montaggio in gruppi sono disponibili in varie classi di precarico. Su richiesta, possono essere forniti gruppi di cuscinetti con precarichi speciali.

## Il design

I cuscinetti obliqui ad una corona di sfere Super-precision SKF della serie 718 (SEA) (→ fig. 1) sono caratterizzati da un anello interno simmetrico ed un anello esterno asimmetrico, per sopportare i carichi radiali ed i carichi assiali in una direzione.

Alcune delle caratteristiche dei cuscinetti della serie 718 (SEA) sono le seguenti:

- angoli di contatto di 15° e 25°
- massimo numero di sfere
- una gabbia in resina fenolica leggera
- forma ottimizzata dei raccordi

Grazie alla possibilità di scegliere tra due angoli di contatto, i progettisti possono ottimizzare le loro applicazioni in base alla capacità di carico assiale, la capacità di sopportare la velocità e la rigidezza. Per consentire la maggiore capacità di carico, ogni cuscinetto è dotato del numero massimo di sfere.

La gabbia, guidata dallo spallamento dell'anello esterno, è stata concepita per consentire una buona alimentazione di lubrificante alle aree di contatto sfere/pista. La forma dei raccordi degli anelli interno ed esterno (→ fig. 2) è stata ottimizzata per garantire una maggiore precisione di montaggio. Grazie a questa caratteristica, non solo viene semplificato il montaggio, ma si ottiene anche una riduzione del rischio di danneggiamento dei componenti correlati.

## Versioni disponibili dei cuscinetti

I requisiti richiesti per i cuscinetti possono variare in base alle condizioni di esercizio delle specifiche applicazioni di precisione. Per soddisfare le varie esigenze, la SKF produce quattro versioni di cuscinetti obliqui a sfere Super-precision della serie 718 (SEA).



## Angoli di contatto

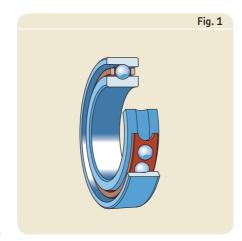
I cuscinetti della serie 718 (SEA) vengono prodotti, nella versione standard, con (→ fig. 3):

- un angolo di contatto di 15°, suffisso nella denominazione CD(1)
- un angolo di contatto di 25°, suffisso nella denominazione ACD(3)

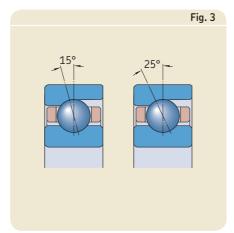
I cuscinetti con un angolo di contatto di 25° sono utilizzati principalmente nelle applicazioni che richiedono un elevato grado di rigidezza assiale o un'elevata capacità di carico assiale.

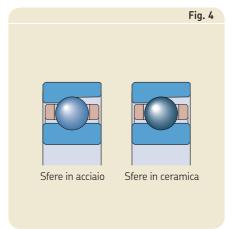
## Materiali per le sfere

I cuscinetti della serie 718 (SEA) sono disponibili, nella versione standard, con (→ fig. 4):


- sfere in acciaio, nessun suffisso nella denominazione
- sfere in ceramica (nitruro di silicio), suffisso nella denominazione HC (/NS)

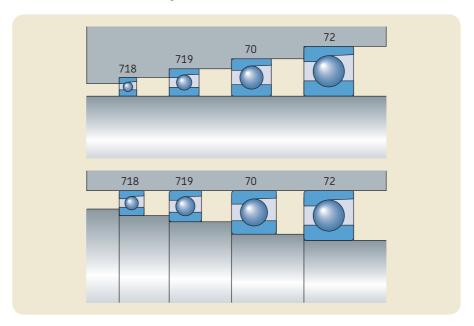

Dato che le sfere in ceramica sono notevolmente più leggere e più dure di quelle in acciaio, i cuscinetti ibridi sono in grado di garantire un livello di rigidezza più elevato e operare a velocità considerevolmente maggiori rispetto ai cuscinetti interamente in acciaio. Il peso ridotto delle sfere in ceramica permette una riduzione delle forze centrifughe all'interno del cuscinetto e una minore produzione di calore. La riduzione delle forze centrifughe è particolarmente importante nelle applicazioni delle macchine utensili, in cui si verificano frequentemente avviamenti e arresti rapidi. La minore produzione di calore del cuscinetto si traduce in un risparmio energetico e nel prolungamento della durata operativa del lubrificante.


## Cuscinetti singoli e gruppi di cuscinetti appaiati


I cuscinetti obliqui a sfere Super-precision SKF serie 718 (SEA) sono disponibili come:

- cuscinetti singoli, standard
- cuscinetti singoli per montaggio universale
- gruppi di cuscinetti appaiati
- gruppi di cuscinetti per montaggio universale










#### Confronto tra serie diverse

I cuscinetti della serie 718 (SEA) si distinguono dai cuscinetti obliqui a sfere di alta precisione di altre serie principalmente per la sezione trasversale più piccola. Dato un determinato diametro esterno, i cuscinetti della serie 718 (SEA) sono idonei per il diametro albero più grande e la presenza di un maggiore numero di sfere consente un aumento della rigidezza.



## Applicazioni

La gamma di cuscinetti obliqui a sfere Super-precision SKF serie 718 (SEA) offre soluzioni per una molteplicità di applicazioni. La loro capacità di garantire un maggiore grado di rigidezza e sopportare velocità elevate, con un errore di rotazione estremamente piccolo, consente numerosi vantaggi per applicazioni differenti.

Grazie al sistema logistico della SKF i cuscinetti sono disponibili in tutto il mondo.

#### **Applicazioni**

- Macchine utensili
- Robotica
- Macchine da stampa
- Sistemi di misurazione
- Mozzi ruota per auto da corsa

#### Requisiti

- Elevata precisione di posizionamento
- Affidabilità nella ripetizione del posizionamento
- Basso consumo energetico
- Lunga durata operativa
- Montaggio semplice
- Maggiore tempo di utilizzazione del macchinario
- Elevata densità di potenza abbinata a un ingombro ridotto

#### Soluzione





## Scelta del cuscinetto

Quando si tratta di applicazioni che richiedono un elevato grado di precisione a velocità elevate, la scelta del cuscinetto è di estrema importanza. Le quattro versioni di cuscinetti obliqui a sfere di Super-precision SKF disponibili nella serie 718 (SEA) sono perfettamente idonee per le condizioni imposte da tali applicazioni.

I principali criteri di scelta per i cuscinetti della serie 718 (SEA) sono:

- precisione
- rigidezza
- velocità
- carico

#### Precisione

Nel caso dei cuscinetti volventi, la precisione viene definita dalle classi di tolleranza relative a precisione di rotazione e precisione dimensionale.

Se si deve scegliere un cuscinetto della serie 718 (SEA), si consiglia di considerare quanto segue:

- Tutti i cuscinetti sono prodotti, di serie, secondo la classe di tolleranza P4 (ABEC 7).
- Su richiesta, tutte le versioni dei cuscinetti possono essere realizzate secondo la classe di tolleranza P2 (ABEC 9), di maggiore precisione.

## Rigidezza

Nelle applicazioni di precisione, la rigidezza della disposizione di cuscinetti è un fattore di estrema importanza, poiché l'entità della deformazione elastica sotto carico determina il grado di produttività e la precisione dell'attrezzatura. Anche se la rigidezza del cuscinetto contribuisce a quella dell'intero sistema, esistono altri fattori di influenza, come il numero e la posizione dei cuscinetti.

Se si deve scegliere un cuscinetto della serie 718 (SEA), si consiglia di considerare quanto segue:

- Le sfere in nitruro di silicio garantiscono un maggiore grado di rigidezza rispetto a quelle in acciaio.
- Un maggiore angolo di contatto consente una maggiore rigidezza assiale.
- I cuscinetti montati in disposizione ad "0" (dorso a dorso) permettono un maggiore grado di rigidezza.
- Per i gruppi asimmetrici di cuscinetti, si consigliano le classi di precarico A, B o C.
- Maggiore è l'angolo di contatto del cuscinetto e maggiore sarà la capacità di carico assiale dello stesso.
- La capacità di carico assiale di una disposizione di cuscinetti può essere aumentata integrando cuscinetti in disposizione in tandem.

#### Velocità

Le applicazioni in presenza di velocità elevate richiedono cuscinetti a basso coefficiente di attrito, in grado di operare a temperature inferiori, come i cuscinetti obliqui a sfere nella serie 718 (SEA). Se si deve scegliere un cuscinetto in questa serie, si consiglia di considerare quanto segue:

- In generale, i cuscinetti lubrificati ad olio possono operare a velocità più elevate di quelli lubrificati a grasso.
- Le velocità che i cuscinetti lubrificati ad olio possono raggiungere variano in base al tipo di lubrificazione.
- I cuscinetti ibridi possono operare a velocità più elevate rispetto a quelli con sfere in acciaio delle stesse dimensioni.
- Maggiore è l'angolo di contatto e minore sarà la capacità di sopportare la velocità.
- Per i gruppi asimmetrici di cuscinetti, si consigliano le classi di precarico L, M o F.

## Carico

Nelle applicazioni di precisione a velocità elevata, la capacità di carico del cuscinetto, normalmente, è meno importante rispetto alle applicazioni ingegneristiche in generale. I cuscinetti obliqui a sfere possono sopportare carichi radiali ed assiali che agiscono simultaneamente. In presenza di tali carichi combinati, anche la direzione del carico gioca un ruolo importante nella scelta.

Se si deve scegliere un cuscinetto della serie 718 (SEA), si consiglia di considerare quanto seque:



## Disposizione dei cuscinetti

Le disposizioni dei cuscinetti possono essere realizzate utilizzando cuscinetti singoli o gruppi di cuscinetti. La **tabella 1** di **pagina 10** illustra alcune possibili combinazioni a tre cuscinetti.

## Cuscinetti singoli

I cuscinetti obliqui a sfere di Super-precision SKF serie 718 (SEA) sono disponibili come cuscinetti standard o cuscinetti per montaggio universale. Quando si ordinano cuscinetti singoli, è necessario indicare il numero di cuscinetti singoli richiesti.

## Cuscinetti standard

I cuscinetti standard sono idonei per le disposizioni in cui si utilizza un solo cuscinetto in ogni posizione.

Benché le ampiezze degli anelli del cuscinetto, nei cuscinetti standard, vengano realizzate secondo tolleranze molto ristrette, questi cuscinetti non sono idonei per essere montati adiacenti gli uni agli altri.

## Cuscinetti per montaggio universale

I cuscinetti per montaggio universale vengono specificamente realizzati in modo che, se montati in ordine casuale ma immediatamente adiacenti, si ottiene un determinato precarico e/o una distribuzione uniforme del carico, senza l'ausilio di spessori o dispositivi equivalenti. Questi cuscinetti possono essere montati in ordine casuale in qualsiasi disposizione di cuscinetti.

I cuscinetti singoli, per montaggio universale, sono disponibili in tre classi di precarico e sono identificati dal suffisso G (*U*) nella denominazione.

## Gruppi di cuscinetti

I cuscinetti obliqui a sfere di Super-precision SKF serie 718 (SEA) sono disponibili come gruppi di cuscinetti appaiati o gruppi di cuscinetti per montaggio universale. In presenza di disposizioni asimmetriche di cuscinetti, i gruppi di cuscinetti appaiati garantiscono maggiori possibilità di soddisfare i requisiti in termini di rigidezza e velocità.

Quando si ordinano gruppi di cuscinetti, è necessario indicare il numero dei gruppi di cuscinetti richiesti (il numero di cuscinetti singoli per ogni gruppo è specificato nella denominazione).

## Gruppi di cuscinetti appaiati

I cuscinetti possono essere forniti in gruppi composti, solitamente, da due, tre o quattro cuscinetti. I cuscinetti vengono appaiati in fase di produzione di modo che, se montati adiacenti gli uni agli altri in un ordine specifico, è possibile ottenere un determinato precarico e/o una distribuzione uniforme del carico, senza l'ausilio di spessori o altri dispositivi simili.

Il diametro del foro e quello esterno di questi cuscinetti sono anch'essi appaiati secondo un valore pari al massimo ad un terzo della tolleranza di diametro applicabile, il che si traduce in una distribuzione anche migliore del carico a montaggio avvenuto, rispetto ai cuscinetti singoli per montaggio universale.

I gruppi di cuscinetti appaiati sono disponibili in tre classi di precarico per disposizioni simmetriche e sei classi di precarico per disposizioni asimmetriche.

## Gruppi di cuscinetti per montaggio universale

Questi cuscinetti possono essere montati in ordine casuale in qualsiasi disposizione di cuscinetti. Il diametro del foro e quello esterno dei cuscinetti per montaggio universale in gruppi sono anch'essi appaiati secondo un valore pari al massimo ad un terzo della tolleranza di diametro applicabile, il che si traduce in una distribuzione anche migliore del carico a montaggio avvenuto, rispetto ai cuscinetti singoli per montaggio universale.

I gruppi di cuscinetti per montaggio universale sono disponibili in tre classi di precarico. Come i cuscinetti singoli per montaggio universale, anche i gruppi di cuscinetti per montaggio universale presentano il suffisso G (U) nella denominazione, ma cambiano la loro posizione nella denominazione stessa (

tabella 1, pagina 10).

## Tipo di disposizione

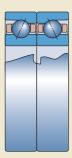
In base ai requisiti di rigidezza e carico assiale, i cuscinetti per montaggio universale e i gruppi di cuscinetti appaiati possono essere combinati in varie disposizioni. Le disposizioni possibili sono illustrate nella **fig. 1**, compresi i suffissi della denominazione, applicabili ai gruppi di cuscinetti appaiati.

## Disposizione di cuscinetti ad "O" (dorso a dorso)

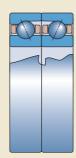
Nelle disposizioni ad "O", le linee di carico divergono verso l'asse del cuscinetto. I carichi assiali sono ammessi in entrambe le direzioni, ma solo su un cuscinetto o un gruppo di cuscinetti in ogni direzione. I cuscinetti montati ad "O" garantiscono una disposizione relativamente rigida, che è in grado di sopportare anche momenti di ribaltamento.

## Disposizione di cuscinetti ad "X" (faccia a faccia)

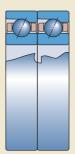
Nelle disposizioni ad "X" (faccia a faccia), le linee di carico convergono verso l'asse del cuscinetto. I carichi assiali sono ammessi in entrambe le direzioni, ma solo su un cuscinetto o un gruppo di cuscinetti in ogni direzione. Le disposizioni ad "X" non sono altrettanto rigide quanto quelle ad "O" e sono meno idonee a sopportare momenti di ribaltamento.


## Disposizione di cuscinetti in tandem

Nelle disposizioni di cuscinetti in tandem, le linee di carico sono parallele, pertanto i carichi radiali ed assiali sono distribuiti equamente tra i cuscinetti del gruppo. I gruppi di cuscinetti sono in grado di sopportare carichi assiali che agiscono in una sola direzione. Se i carichi assiali agiscono nella direzione opposta, o in presenza di carichi combinati, si dovrebbero integrare ulteriori cuscinetti, registrati contro la disposizione in tandem.

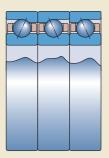

|                                                                                                       |                                                         |                                     |                                                   | Tabella 1 |  |  |  |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------|---------------------------------------------------|-----------|--|--|--|
| Esempio di disposizione a tre cuscinetti con precarico leggero                                        |                                                         |                                     |                                                   |           |  |  |  |
| Criteri di progettazione                                                                              | Cosa ordinare                                           | Denominazione <sup>1)</sup>         | Esempio di ordine                                 |           |  |  |  |
| La disposizione di cuscinetti non è nota                                                              | Tre cuscinetti singoli per montaggio universale         | 718DG/P4<br>(SEA7 CEU)              | 3 × 71810 CDGA/P4<br>(3 × SEA50 7CE1 UL)          |           |  |  |  |
| La disposizione di cuscinetti non è<br>nota e si richiede una distribuzione<br>del carico ottimizzata | Un gruppo di tre cuscinetti per<br>montaggio universale | 718D/P4TG<br>( <i>SEA7 CETU.</i> .) | 1 × 71810 CD/P4TGA<br>(1 × SEA50 7CE1 TUL)        |           |  |  |  |
| La disposizione di cuscinetti è nota e<br>si richiede un grado di rigidezza<br>elevato                | Tre cuscinetti in un gruppo appaiato                    | 718D/P4T<br>( <i>SEA7 CET</i> )     | 1 × 71810 CD/P4TBTA<br>(1 × SEA50 7CE1 TD14,4DaN) |           |  |  |  |
| La disposizione di cuscinetti è nota e<br>si richiede un'elevata velocità                             | Tre cuscinetti in un gruppo appaiato                    | 718D/P4T<br>( <i>SEA7 CET</i> )     | 1 × 71810 CD/P4TBTL<br>(1 × SEA50 7CE1 TDL)       |           |  |  |  |
|                                                                                                       |                                                         |                                     |                                                   |           |  |  |  |
| Per ulteriori informazioni sulle denominazio                                                          | oni, fare riferimento al Sistema di denominazione       | a <b>pagina 28</b> e <b>29</b> .    |                                                   |           |  |  |  |

В

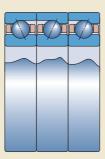

#### Gruppi con 2 cuscinetti



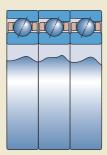
Disposizione ad "0"
Suffisso nella denominazione DB (DD)




Disposizione ad "X"
Suffisso nella denominazione DF (FF)

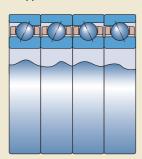



Disposizione in tandem Suffisso nella denominazione DT (*T*)

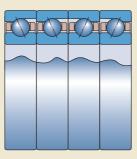

#### Gruppi con 3 cuscinetti



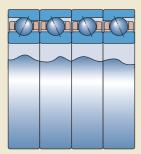
Disposizione ad "0" ed in tandem Suffisso nella denominazione TBT (TD)



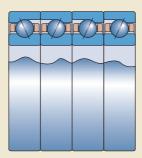

Disposizione ad "X" ed in tandem Suffisso nella denominazione TFT (*TF*)



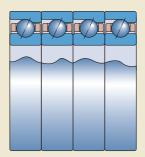

Disposizione in tandem Suffisso nella denominazione TT (37)


#### Gruppi di cuscinetti con 4 cuscinetti




Disposizione ad "0" in tandem Suffisso nella denominazione QBC (TDT)




Disposizione ad "X" in tandem Suffisso nella denominazione QFC (*TFT*)



Disposizione ad "0" ed in tandem Suffisso nella denominazione QBT (3TD)



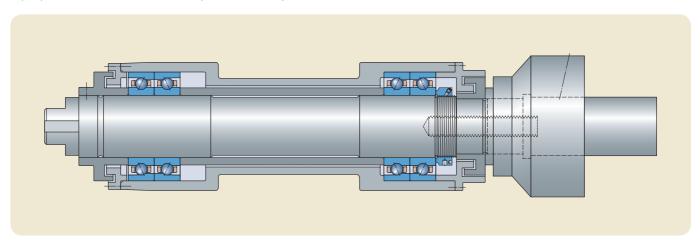
Disposizione ad "X" ed in tandem Suffisso nella denominazione QFT (3*TF*)



Disposizione in tandem Suffisso nella denominazione QT (47)

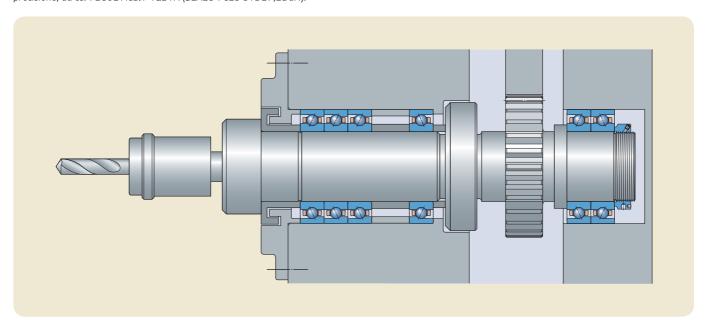
## Esempi di applicazione

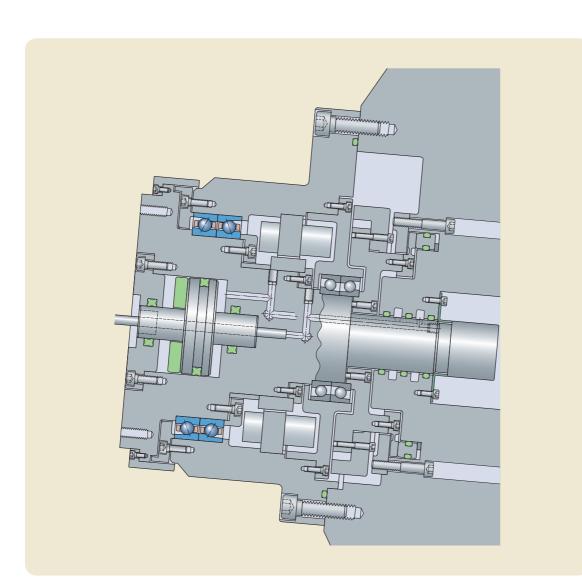
I cuscinetti obliqui a sfere Super-precision vengono comunemente, ma non esclusivamente, utilizzati nelle applicazioni delle macchine utensili. In base al tipo di macchina utensile ed ai suoi impieghi, i mandrini possono imporre requisiti differenti per il tipo di disposizione di cuscinetti. I mandrini dei torni, ad esempio, sono tipicamente utilizzati per il taglio di materiali a bassa velocità. La profondità di taglio e il ritmo di alimentazione, normalmente, vengono portate al massimo. Un elevato grado di rigidezza e un'elevata


capacità di carico sono pertanto requisiti operativi importanti.

Quando sono richieste velocità più elevate, come nel caso delle stazioni di lavorazione ad alta velocità, delle operazioni di fresatura e delle applicazioni di rettifica, si giunge tipicamente ad un compromesso tra rigidezza e capacità di carico. In queste applicazioni ad alta velocità, riuscire a controllare il calore prodotto dai cuscinetti costituisce un'ulteriore sfida.

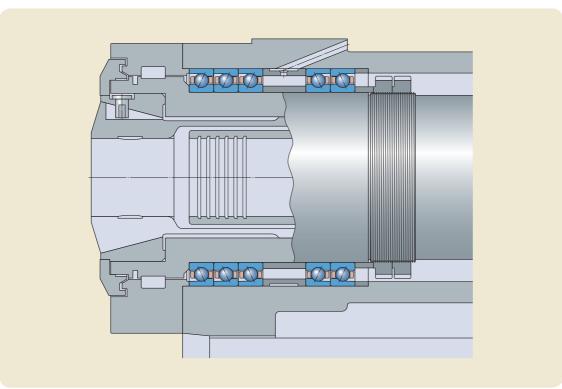
Per ogni applicazione di precisione esiste una disposizione ottimale, in grado di garantire la migliore combinazione di elevata rigidezza e capacità di carico, minore produzione di calore e maggiore durata del cuscinetto.


#### Mandrino porta utensile


Quando lo spazio è limitato ed i carichi sono moderati, si consiglia l'impiego di due gruppi di cuscinetti appaiati composti da coppie di cuscinetti obliqui a sfere Super-precision, ad es. 71801 ACD/P4DBB (SEA12 7CE3 DDM).



#### Testa di foratura multi-mandrino


Per le teste di foratura multi-mandrino, in cui lo spazio radiale è limitato e la rigidezza assiale è un fattore di estrema importanza, si possono utilizzare cuscinetti obliqui a sfere Super-precision appaiati in un gruppo di quattro cuscinetti (in disposizione ad "0" ed in tandem), separati da un distanziale di precisione, ad es. 71802 ACD/P4QBTA (SEA15 7CE3 3TD27,2DaN).





Testa rettificatrice

Per le teste rettificatrici, in cui la rigidezza è importante e lo spazio disponibile limitato, sono idonei gruppi composti da due cuscinetti obliqui a sfere Super-precision sull'estremità dell'utensile, ad es.
71824 ACD/P4DBB (SEA120 7CE3 DDM).



# Mandrino per tornio Per i mandrini dei torni idonei per grandi diametri barra, si utilizzano cuscinetti obliqui a sfere Super-precision appaiati in un gruppo di cinque cuscinetti, ad es. 71818 ACD/P4PBCB (SEA90 7CE3 3TDT45DaN), che garantiscono un buon livello di rigidezza.

## Lubrificazione

La scelta del lubrificante e del tipo di lubrificazione per una determinata applicazione dipende, principalmente, dalle condizioni di esercizio, come la temperatura o la velocità ammissibili, ma può anche essere imposta dal tipo di lubrificazione dei componenti adiacenti, come ad es. le ruote dentate.

Per permettere la formazione di una pellicola di lubrificante adeguata tra sfere e piste, è necessaria solo una piccolissima quantità di lubrificante. Per guesto motivo, la lubrificazione a grasso sta diventando sempre più diffusa per le disposizioni di cuscinetti di precisione. Con la lubrificazione a grasso, le perdite idrodinamiche per attrito sono di piccola entità e la temperatura di esercizio può essere mantenuta al minimo. Tuttavia, guando le velocità sono elevate, si consiglia la lubrificazione ad olio per i cuscinetti, poiché la durata operativa del grasso sarebbe troppo breve in tali condizioni e poiché l'olio garantisce anche il vantaggio del raffreddamento.

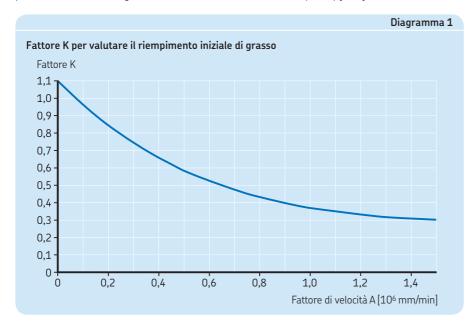
## Lubrificazione a grasso

Per la maggior parte delle applicazioni in cui si utilizzano cuscinetti obliqui a sfere Superprecision, è idoneo un grasso a base di olio

minerale con addensante al litio Questi grassi aderiscono bene alle superfici del cuscinetto e possono essere utilizzati a temperature che vanno da -30 a +100 °C. Per le disposizioni di cuscinetti che operano a velocità e temperature molto elevate, e per le quali è richiesta anche una lunga durata operativa, si è rivelato ottimale l'impiego di un grasso a base di olio sintetico, ad es. il grasso a base di olio diestere SKF LGLT 2.

## Riempimento iniziale di grasso

Nelle applicazioni a velocità elevata, il riempimento di grasso dovrebbe occupare meno del 30% dello spazio libero nel cuscinetto. Il riempimento iniziale di grasso dipende sia dalle dimensioni del cuscinetto che dal fattore velocità, cioè


$$A = n d_m$$

A = fattore velocità [mm/min]

n = velocità rotazionale [giri/min]

d<sub>m</sub> = diametro medio del cuscinetto

= 0.5 (d + D) [mm]



Il riempimento iniziale di grasso si può valutare utilizzando la formula

 $G = KG_{ref}$ 

|                                                               |                  | Tabella 1                                                           |  |  |  |  |  |
|---------------------------------------------------------------|------------------|---------------------------------------------------------------------|--|--|--|--|--|
| Quantità di g                                                 | rasso di riferim | iento per                                                           |  |  |  |  |  |
| valutare il rie                                               | empimento iniz   | iale di grasso                                                      |  |  |  |  |  |
| Cuscinetto<br>Foro<br>diametro<br>d                           | Dimensioni       | Riferimento<br>grasso<br>quantità <sup>1)</sup><br>G <sub>ref</sub> |  |  |  |  |  |
| mm                                                            | -                | cm <sup>3</sup>                                                     |  |  |  |  |  |
| 10                                                            | 00               | 0,06                                                                |  |  |  |  |  |
| 12                                                            | 01               | 0,07                                                                |  |  |  |  |  |
| 15                                                            | 02               | 0,08                                                                |  |  |  |  |  |
| 17                                                            | 03               | 0,09                                                                |  |  |  |  |  |
| 20                                                            | 04               | 0,18                                                                |  |  |  |  |  |
| 25                                                            | 05               | 0,21                                                                |  |  |  |  |  |
| 30                                                            | 06               | 0,24                                                                |  |  |  |  |  |
| 35                                                            | 07               | 0,28                                                                |  |  |  |  |  |
| 40                                                            | 08               | 0,31                                                                |  |  |  |  |  |
| 45                                                            | 09               | 0,36                                                                |  |  |  |  |  |
| 50                                                            | 10               | 0,5                                                                 |  |  |  |  |  |
| 55                                                            | 11               | 0,88                                                                |  |  |  |  |  |
| 60                                                            | 12               | 1,2                                                                 |  |  |  |  |  |
| 65                                                            | 13               | 1,3                                                                 |  |  |  |  |  |
| 70                                                            | 14               | 1,4                                                                 |  |  |  |  |  |
| 75                                                            | 15               | 1,5                                                                 |  |  |  |  |  |
| 80                                                            | 16               | 1,6                                                                 |  |  |  |  |  |
| 85                                                            | 17               | 2,7                                                                 |  |  |  |  |  |
| 90                                                            | 18               | 2,9                                                                 |  |  |  |  |  |
| 95                                                            | 19               | 3,1                                                                 |  |  |  |  |  |
| 100                                                           | 20               | 3,2                                                                 |  |  |  |  |  |
| 105                                                           | 21               | 4                                                                   |  |  |  |  |  |
| 110                                                           | 22               | 5,1                                                                 |  |  |  |  |  |
| 120                                                           | 24               | 5,5                                                                 |  |  |  |  |  |
| 130                                                           | 26               | 9,3                                                                 |  |  |  |  |  |
| 140                                                           | 28               | 9,9                                                                 |  |  |  |  |  |
| 150                                                           | 30               | 13                                                                  |  |  |  |  |  |
| 160                                                           | 32               | 14                                                                  |  |  |  |  |  |
| <sup>1)</sup> Si riferisce ad un grado di riempimento del 30% |                  |                                                                     |  |  |  |  |  |

dove

- G = riempimento iniziale di grasso [cm<sup>3</sup>]
- K = un fattore di calcolo che dipende dal fattore velocità A (→ diagramma 1)

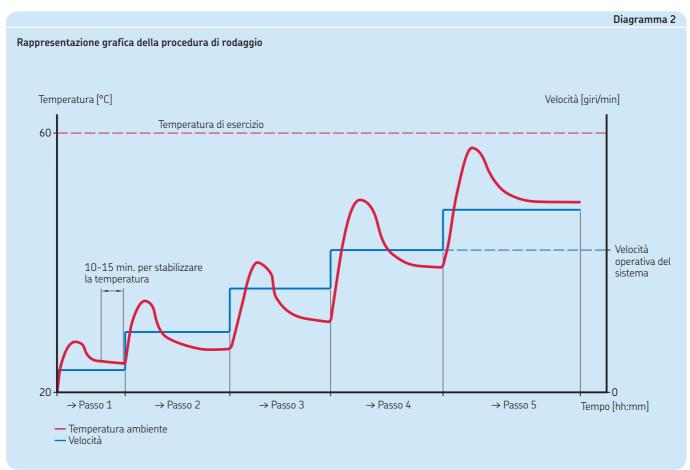
G<sub>ref</sub> = quantità di grasso di riferimento (→ tabella 1) [cm³]

## Rodaggio dei cuscinetti lubrificati a grasso

Il funzionamento dei cuscinetti di superprecisione della serie 718 (SEA) lubrificati a grasso, inizialmente, è caratterizzato da un maggiore momento di attrito. Se i cuscinetti vengono fatti funzionare a velocità elevate senza un periodo di rodaggio, l'aumento di temperatura può essere notevole. L'elevato momento di attrito è dovuto al movimento del grasso ed è necessario un determinato periodo di tempo, perché il grasso in eccesso venga espulso dall'area di contatto. Questo periodo può essere ridotto al minimo applicando, durante la fase di assemblaggio, una piccola quantità di grasso distribuita uniformemente su ambo i lati del cuscinetto. Anche l'impiego di distanziali tra due cuscinetti adiacenti si è rivelato vantaggioso.

(→ Regolazione individuale del precarico mediante distanziali, pagina 20).

Il tempo necessario a stabilizzare la temperatura di esercizio dipende da numerosi fattori – il tipo di grasso, il riempimento iniziale, il metodo di applicazione del grasso ai cuscinetti e la procedura di rodaggio (→ diagramma 2).


Normalmente, se idoneamente rodati, i cuscinetti Super-precision possono operare con una quantità minima di lubrificante, il che rende possibile ottenere il minore momento di attrito e più basse temperature. Il grasso che si deposita sui lati del cuscinetto funge da riserva e l'olio fluisce sulle piste per garantire un'efficiente lubrificazione a lungo termino.

Il rodaggio può essere realizzato in molteplici modi. Se possibile, ed indipendentemente dalla procedura scelta, il rodaggio dovrebbe prevedere la rotazione del cuscinetto sia in senso orario che antiorario.

La procedura di rodaggio standard può essere sintetizzata come segue:

1 Selezionare una velocità iniziale bassa ed intervalli di incremento velocità relativamente brevi.

- 2 Stabilire un limite di temperatura assoluto, solitamente da 60 a 65 °C. Si consiglia di dotare l'attrezzatura di finecorsa per l'arresto della stessa, se la temperatura supera il limite stabilito.
- 3 Avviare la macchina alla velocità iniziale scelta.
- 4 Monitorare la temperatura effettuando le misurazioni nella posizione dell'anello esterno del cuscinetto, evitando i picchi, ed attendere che si stabilizzi. Se la temperatura raggiunge il limite, interrompere il funzionamento e permettere al cuscinetto di raffreddarsi. Riavviare alla stessa velocità ed attendere che la temperatura si stabilizzi.
- 5 Aumentare la velocità di un solo intervallo e ripetere la **fase 4**.
- 6 Continuare ad aumentare la velocità secondo gli intervalli stabiliti, permettendo alla temperatura di stabilizzarsi al di sotto del limite in ogni fase. Procedere finché non si raggiunge questa condizione per un intervallo di velocità maggiore della velocità di esercizio del sistema. Ciò produce un minore aumento di temperatura durante il normale esercizio. A questo punto il cuscinetto è stato rodato idoneamente.



La procedura di rodaggio standard, normalmente, richiede molto tempo, infatti per completare tale procedura possono essere necessarie addirittura da 8 a 10 ore.

La procedura di rodaggio abbreviata prevede una riduzione del numero di fasi. Benché ogni fase possa dover essere ripetuta più volte, ogni ciclo dura solo pochi minuti ed il tempo totale per questa procedura di rodaggio è considerevolmente inferiore rispetto a quello necessario per la procedura standard.

Le fasi principali della procedura di rodaggio abbreviata possono essere sintetizzate come segue:

- 1 Scegliere una velocità iniziale pari a circa il 20 25% della velocità ammissibile ed intervalli di aumento velocità relativamente lunghi.
- 2 Stabilire un limite di temperatura assoluto, solitamente da 60 a 65 °C. Si consiglia di dotare l'attrezzatura di finecorsa per l'arresto della stessa, se la temperatura supera il limite stabilito.
- **3** Avviare la macchina alla velocità iniziale scelta.
- 4 Monitorare la temperatura effettuando le misurazioni nella posizione dell'anello esterno del cuscinetto finché la temperatura si stabilizza. E' necessario operare con cautela, poiché l'aumento di temperatura può essere molto rapido.
- **5** Interrompere il funzionamento ed attendere che l'anello esterno del cuscinetto si raffreddi da 5 a 10 °C.
- **6** Riavviare alla stessa velocità una seconda volta e monitorare la temperatura finché non viene nuovamente raggiunto il limite.
- 7 Ripetere le **fasi 5** e **6** finché la temperatura si stabilizza al di sotto del limite. Se il picco di temperatura è inferiore al limite di allarme, il cuscinetto si considera rodato a quella specifica temperatura.
- 8 Aumentare la velocità di un solo intervallo e ripetere le **fasi da 4** a **7**.
- 9 Procedere finché il cuscinetto opera in un intervallo di velocità maggiore della velocità di esercizio del sistema. Ciò produce un minore aumento di temperatura durante il normale esercizio. A questo punto il cuscinetto è stato rodato idoneamente.

## Lubrificazione a olio

La lubrificazione a olio è consigliata per molte applicazioni, poiché la procedura di alimentazione può essere adattata alle specifiche condizioni di esercizio e al design dell'attrezzatura.

## Lubrificazione olio-aria

Le disposizioni comuni che incorporano cuscinetti della serie 718 (SEA), in cui sono presenti velocità operative elevate e sono richieste basse temperature di esercizio, generalmente, impongono l'adozione di un sistema di lubrificazione olio-aria. Con il metodo olio-aria, anche chiamato metodo a goccia d'olio, quantità accuratamente dosate di olio vengono erogate ad ogni singolo cuscinetto mediante aria compressa. Nel caso dei gruppi di cuscinetti, ogni singolo cuscinetto è dotato di iniettore di olio separato. La maggior parte dei design prevedono distanziali, che incorporano ugelli per l'olio.

Per valutare la quantità di olio da erogare ad ogni cuscinetto si può utilizzare la formula

$$Q = 1.3 d_{m}$$

dove

Q = portata dell'olio [mm<sup>3</sup>/h]

 $d_m$  = diametro medio del cuscinetto

= 0,5 (d + D) [mm]

L'olio viene erogato, da un dosatore, alle linee di mandata ad intervalli regolari. L'olio ricopre la superficie interna delle linee di mandata e "striscia" verso gli ugelli, tramite i quali viene erogato ai cuscinetti. Gli ugelli per olio devono essere posizionati in maniera idonea, (

tabella 3), per garantire che l'olio venga

(→ tabella 3), per garantire che l olio venga erogato all'area di contatto tra sfere e piste ed evitare interferenze con la gabbia.

Per i cuscinetti obliqui a sfere di superprecisione, normalmente, sono consigliati tipi di olio di alta qualità senza additivi EP. Solitamente, si utilizzano tipi di olio con viscosità tra 40 e 100 mm²/s, a 40 °C. Si consiglia, inoltre, l'impiego di un filtro per evitare che particelle > 5  $\mu m$  raggiungano i cuscinetti.



| Cuscinetto<br>Foro<br>diametro | Dimensioni | Ugello olio<br>posizione |
|--------------------------------|------------|--------------------------|
| d                              |            | $d_n$                    |
| mm                             | _          | mm                       |
| 10                             | 00         | 13,4                     |
| 12                             | 01         | 15,4                     |
| 15                             | 02         | 18,4                     |
| 17                             | 03         | 20,4                     |
| 20                             | 04         | 24,5                     |
| 25                             | 05         | 29,5                     |
| 30                             | 06         | 34,5                     |
| 35                             | 07         | 39,5                     |
| 40                             | 08         | 44,5                     |
| 45                             | 09         | 50,0                     |
| 50                             | 10         | 55,6                     |
| 55                             | 11         | 61,3                     |
| 60                             | 12         | 66,4                     |
| 65                             | 13         | 72,4                     |
| 70                             | 14         | 77,4                     |
| 75                             | 15         | 82,4                     |
| 80                             | 16         | 87,4                     |
| 85                             | 17         | 94,1                     |
| 90                             | 18         | 99,1                     |
| 95                             | 19         | 104,1                    |
| 100                            | 20         | 109,1                    |
| 105                            | 21         | 114,6                    |
| 110                            | 22         | 120,9                    |
| 120                            | 24         | 130,9                    |
| 130                            | 26         | 144,0                    |
| 140                            | 28         | 153,2                    |
| 150                            | 30         | 165,6                    |
| 160                            | 32         | 175,6                    |

## Cuscinetti – dati generali

## Dimensioni

Le dimensioni d'ingombro dei cuscinetti obliqui a sfere Super-precision SKF serie 718 (SEA) per la serie dimensionale 18 sono conformi alla ISO 15:2011.

## Dimensioni del raccordo

I valori minimi per le dimensioni del raccordo in direzione radiale  $(r_1, r_3)$  ed in direzione assiale  $(r_2, r_4)$  sono riportati nelle tabelle di prodotto. I valori per il raccordo dell'anello interno e lato assiale di quello esterno sono conformi alla ISO 15:2011; i valori per il lato non assiale dell'anello esterno non sono standardizzati.

I limiti massimi ammissibili per il raccordo sono conformi alla ISO 582:1995.

## **Tolleranze**

Nella versione standard, i cuscinetti obliqui a sfere Super-precision SKF della serie 718 (SEA) sono realizzati secondo la classe di tolleranza P4, conformemente alla ISO 492:2002. Su richiesta, possono essere forniti cuscinetti secondo la classe di tolleranza P2, di maggiore precisione.

I valori di tolleranza sono elencati di seguito:

- classe di tolleranza P4 (ABEC 7) nella tabella 1
- classe di tolleranza P2 (ABEC 9) nella tabella 2 a pagina 18

|                                    | interno                 |                                   |                        |                            |                        |                        |                         |                            |                              |                                   |                              |                               |                              |                              |                              |
|------------------------------------|-------------------------|-----------------------------------|------------------------|----------------------------|------------------------|------------------------|-------------------------|----------------------------|------------------------------|-----------------------------------|------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|
| <b>d</b><br>oltre                  | incl.                   | <b>Δ<sub>dmp</sub></b><br>elevata | bassa                  | Δ <sub>ds</sub><br>elevata | bassa                  | V <sub>dp</sub><br>max | V <sub>dmp</sub><br>max | Δ <sub>Bs</sub><br>elevata | bassa                        | Δ <sub>B1s</sub><br>elevata       | bassa                        | <b>V</b> <sub>Bs</sub><br>max | <b>K<sub>ia</sub></b><br>max | <b>S<sub>d</sub></b><br>max  | <b>S<sub>ia</sub></b><br>max |
| mm                                 |                         | μm                                |                        | μm                         |                        | μm                     | μm                      | μm                         |                              | μm                                |                              | μm                            | μm                           | μm                           | μm                           |
| 2,5<br>10<br>18<br>30              | 10<br>18<br>30<br>50    | 0<br>0<br>0                       | -4<br>-4<br>-5<br>-6   | 0<br>0<br>0<br>0           | -4<br>-4<br>-5<br>-6   | 4<br>4<br>5<br>6       | 2<br>2<br>2,5<br>3      | 0<br>0<br>0<br>0           | -40<br>-80<br>-120<br>-120   | 0<br>0<br>0<br>0                  | -250<br>-250<br>-250<br>-250 | 2,5<br>2,5<br>2,5<br>3        | 2,5<br>2,5<br>3<br>4         | 3<br>3<br>4<br>4             | 3<br>3<br>4<br>4             |
| 50<br>80<br>120<br>150             | 80<br>120<br>150<br>180 | 0<br>0<br>0<br>0                  | -7<br>-8<br>-10<br>-10 | 0<br>0<br>0<br>0           | -7<br>-8<br>-10<br>-10 | 7<br>8<br>10<br>10     | 3,5<br>4<br>5<br>5      | 0<br>0<br>0<br>0           | -150<br>-200<br>-250<br>-250 | 0<br>0<br>0                       | -250<br>-380<br>-380<br>-380 | 4<br>4<br>5<br>5              | 4<br>5<br>6<br>6             | 5<br>5<br>6<br>6             | 5<br>5<br>7<br>7             |
| <b>Anello</b><br><b>D</b><br>oltre | esterno<br>incl.        | Δ <sub>Dmp</sub><br>elevata       | bassa                  | Δ <sub>Ds</sub><br>elevata | bassa                  | V <sub>Dp</sub><br>max | V <sub>Dmp</sub><br>max | ∆ <sub>Cs</sub><br>elevata | bassa                        | <b>Δ<sub>C1s</sub></b><br>elevata | bassa                        | V <sub>Cs</sub><br>max        | K <sub>ea</sub><br>max       | <b>S</b> <sub>D</sub><br>max | S <sub>ea</sub><br>max       |
| mm                                 |                         | μm                                |                        | μm                         |                        | μm                     | μm                      | μm                         |                              | μm                                |                              | μm                            | μm                           | μm                           | μm                           |
| 18<br>30<br>50<br>80               | 30<br>50<br>80<br>120   | 0<br>0<br>0<br>0                  | -5<br>-6<br>-7<br>-8   | 0<br>0<br>0<br>0           | -5<br>-6<br>-7<br>-8   | 5<br>6<br>7<br>8       | 2,5<br>3<br>3,5<br>4    | 0<br>0<br>0<br>0           | -120<br>-120<br>-150<br>-200 | 0<br>0<br>0<br>0                  | -250<br>-250<br>-250<br>-380 | 2,5<br>2,5<br>3<br>4          | 4<br>5<br>5<br>6             | 4<br>4<br>4<br>5             | 5<br>5<br>5<br>6             |
| 120<br>150<br>180                  | 150<br>180<br>250       | 0<br>0<br>0                       | -9<br>-10<br>-11       | 0<br>0<br>0                | -9<br>-10<br>-11       | 9<br>10<br>11          | 5<br>5<br>6             | 0<br>0<br>0                | -250<br>-250<br>-300         | 0<br>0<br>0                       | -380<br>-380<br>-500         | 5<br>5<br>7                   | 7<br>8<br>10                 | 5<br>5<br>7                  | 7<br>8<br>10                 |

## Precarico del cuscinetto

## Precarico nei cuscinetti prima del montaggio

Per soddisfare i requisiti relativi alla velocità rotazionale ed al grado di rigidezza, i cuscinetti della serie 718 (SEA) vengono prodotti secondo classi di precarico differenti. Per le applicazioni in cui è più importante garantire un elevato grado di rigidezza rispetto ad una velocità operativa elevata, sono disponibili le seguenti classi di precarico:

- classa A, precarico leggero
- classe B, precarico medio
- classe C, precarico pesante

Queste classi di precarico sono valide per:

- cuscinetti singoli per montaggio universale
- gruppi di cuscinetti per montaggio universale
- tutti i gruppi di cuscinetti appaiati

Il livello di precarico dipende dall'angolo di contatto, dalla geometria interna e dalle dimensioni del cuscinetto e si applica ai gruppi com-

posti da due cuscinetti in disposizione ad "0" oppure ad "X", come riportato nella **tabella 3**.

I gruppi composti da tre o quattro cuscinetti, e precaricati secondo le classi di precarico A, B e C, presentano un precarico maggiore rispetto ai gruppi composti da due cuscinetti. Il precarico di questi gruppi di cuscinetti si ottiene moltiplicando i valori riportati nella **tabella 3** per un fattore di:

- 1,35 per disposizioni TBT (*TD*) e TFT (*TF*)
- 1,6 per disposizioni QBT (3TD) e QFT (3TF)
- 2 per disposizioni QBC (TDT) e QFC (TFT)

Per le applicazioni in cui è più importante garantire una velocità operativa elevata rispetto ad un elevato grado di rigidezza, sono disponibili le seguenti classi di precarico:

- classe L, precarico leggero ridotto per gruppi asimmetrici di cuscinetti
- classe M, precarico medio ridotto per gruppi asimmetrici di cuscinetti
- classe F, precarico pesante ridotto per gruppi asimmetrici di cuscinetti

Queste classi di precarico sono disponibili solo per gruppi asimmetrici di cuscinetti, cioè per le disposizioni TBT (*TD*), TFT (*TF*), QBT (3TD) e QFT (3TF). Data la capacità di sopportare velocità maggiori e il minore grado di rigidezza, in questi casi, i gruppi di cuscinetti appaiati composti da tre o quattro cuscinetti presentano lo stesso precarico dei gruppi con due cuscinetti, nella classe di precarico equivalente. Il precarico per i gruppi di cuscinetti asimmetrici, cioè le disposizioni TBT (TD), TFT (TF), QBT (3TD) e QFT (3TF), può quindi essere ottenuto moltiplicando i valori riportati nella **tabella 3** per un fattore pari a 1.

Su richiesta, è possibile fornire cuscinetti con un precarico speciale. Questi gruppi di cuscinetti sono identificati con il suffisso G nella denominazione, seguito da un numero che indica il valore del precarico espresso in daN. Il precarico speciale non è applicabile per gruppi di cuscinetti per montaggio universale che sono formati da tre o più cuscinetti (suffissi TG e GQ).

## Precarico in gruppi di cuscinetti dopo il montaggio

I cuscinetti per montaggio universale ed i gruppi di cuscinetti appaiati presentano un precarico maggiore dopo il montaggio ri-

|                        |                         |                             |                              |                            |                              |                          |                          |                            |                              |                             |                              |                               |                               |                              | Tabella 2                     |
|------------------------|-------------------------|-----------------------------|------------------------------|----------------------------|------------------------------|--------------------------|--------------------------|----------------------------|------------------------------|-----------------------------|------------------------------|-------------------------------|-------------------------------|------------------------------|-------------------------------|
| Tollera                | anze classe             | P2 (ABE                     | C 9)                         |                            |                              |                          |                          |                            |                              |                             |                              |                               |                               |                              |                               |
| Anello                 | interno                 |                             |                              |                            |                              |                          |                          |                            |                              |                             |                              |                               |                               |                              |                               |
| d<br>oltre             | incl.                   | Δ <sub>dmp</sub><br>elevata | bassa                        | Δ <sub>ds</sub><br>elevata | bassa                        | V <sub>dp</sub><br>max   | V <sub>dmp</sub><br>max  | Δ <sub>Bs</sub><br>elevata | bassa                        | Δ <sub>B1s</sub><br>elevata | bassa                        | <b>V</b> <sub>Bs</sub><br>max | <b>K</b> <sub>ia</sub><br>max | <b>S</b> <sub>d</sub><br>max | <b>S<sub>ia</sub></b><br>max  |
| mm                     |                         | μm                          |                              | μm                         |                              | μm                       | μm                       | μm                         |                              | μm                          |                              | μm                            | μm                            | μm                           | μm                            |
| 2,5<br>10<br>18<br>30  | 10<br>18<br>30<br>50    | 0<br>0<br>0<br>0            | -2,5<br>-2,5<br>-2,5<br>-2,5 | 0<br>0<br>0<br>0           | -2,5<br>-2,5<br>-2,5<br>-2,5 | 2,5<br>2,5<br>2,5<br>2,5 | 1,5<br>1,5<br>1,5<br>1,5 | 0<br>0<br>0<br>0           | -40<br>-80<br>-120<br>-120   | 0<br>0<br>0<br>0            | -250<br>-250<br>-250<br>-250 | 1,5<br>1,5<br>1,5<br>1,5      | 1,5<br>1,5<br>2,5<br>2,5      | 1,5<br>1,5<br>1,5<br>1,5     | 1,5<br>1,5<br>2,5<br>2,5      |
| 50<br>80<br>120<br>150 | 80<br>120<br>150<br>180 | 0<br>0<br>0<br>0            | -4<br>-5<br>-7<br>-7         | 0<br>0<br>0<br>0           | -4<br>-5<br>-7<br>-7         | 4<br>5<br>7<br>7         | 2<br>2,5<br>3,5<br>3,5   | 0<br>0<br>0                | -150<br>-200<br>-250<br>-250 | 0<br>0<br>0                 | -250<br>-380<br>-380<br>-380 | 1,5<br>2,5<br>2,5<br>4        | 2,5<br>2,5<br>2,5<br>5        | 1,5<br>2,5<br>2,5<br>4       | 2,5<br>2,5<br>2,5<br>5        |
| Anello<br>D<br>oltre   | esterno<br>incl.        | ∆ <sub>Dmp</sub><br>elevata | bassa                        | Δ <sub>Ds</sub><br>elevata | bassa                        | V <sub>Dp</sub><br>max   | V <sub>Dmp</sub><br>max  | ∆ <sub>Cs</sub><br>elevata | bassa                        | Δ <sub>C1s</sub><br>elevata | bassa                        | V <sub>Cs</sub><br>max        | <b>K</b> <sub>ea</sub><br>max | <b>S</b> <sub>D</sub><br>max | <b>S</b> <sub>ea</sub><br>max |
| mm                     |                         | μm                          |                              | μm                         |                              | μm                       | μm                       | μm                         |                              | μm                          |                              | μm                            | μm                            | μm                           | μm                            |
| 18<br>30<br>50<br>80   | 30<br>50<br>80<br>120   | 0<br>0<br>0<br>0            | -4<br>-4<br>-4<br>-5         | 0<br>0<br>0<br>0           | -4<br>-4<br>-4<br>-5         | 4<br>4<br>4<br>5         | 2<br>2<br>2<br>2,5       | 0<br>0<br>0<br>0           | -120<br>-120<br>-150<br>-200 | 0<br>0<br>0<br>0            | -250<br>-250<br>-250<br>-380 | 1,5<br>1,5<br>1,5<br>2,5      | 2,5<br>2,5<br>4<br>5          | 1,5<br>1,5<br>1,5<br>2,5     | 2,5<br>2,5<br>4<br>5          |
| 120<br>150<br>180      | 150<br>180<br>250       | 0<br>0<br>0                 | -5<br>-7<br>-8               | 0<br>0<br>0                | -5<br>-7<br>-8               | 5<br>7<br>8              | 2,5<br>3,5<br>4          | 0<br>0<br>0                | -250<br>-250<br>-350         | 0<br>0<br>0                 | -380<br>-380<br>-500         | 2,5<br>2,5<br>4               | 5<br>5<br>7                   | 2,5<br>2,5<br>4              | 5<br>5<br>7                   |

spetto a prima del montaggio. L'aumento del precarico dipende, principalmente, da:

- le tolleranze effettive per le sedi del cuscinetto sull'albero e nel foro dell'alloggiamento
- la velocità rotazionale dell'albero, se è previsto un precarico di tipo rigido

Altri fattori che concorrono all'aumento del precarico possono essere:

- differenze di temperatura tra anello interno, anello esterno e sfere
- differenti coefficienti di dilatazione termica per i materiali dell'albero e dell'alloggiamento
- scostamenti dalla forma geometrica dei componenti correlati, ad es. cilindricità, perpendicolarità o concentricità delle sedi dei cuscinetti

Se i cuscinetti sono montati secondo l'accoppiamento consueto (tolleranza albero js4 e tolleranza foro alloggiamento JS5, per cuscinetti nella classe di tolleranza P4), su un albero in acciaio e un alloggiamento a parete spessa in acciaio o in ghisa, il precarico può essere determinato, con sufficiente precisione, dalla formula

$$G_m = f f_1 f_2 f_{HC} G_{A.B.C}$$

dove

G<sub>m</sub> = precarico nel gruppo di cuscinetti dopo il montaggio [N]

 $G_{A,B,C}$  = precarico nel gruppo di cuscinetti prima del montaggio ( $\rightarrow$  tabella 3) [N]

- f = un fattore legato al cuscinetto determinato dalle dimensioni dello stesso (\rightarrow tabella 4, a pagina 20)
- f<sub>1</sub> = un fattore di correzione determinato dall'angolo di contatto (→ tabella 5, a pagina 20)
- f<sub>2</sub> = un fattore di correzione determinato dalla classe di precarico

(→ tabella 5, a pagina 20)

 $f_{HC}$  = un fattore di correzione per cuscinetti ibridi ( $\rightarrow$  tabella 5, a pagina 20)

Possono essere necessari accoppiamenti molto più vincolanti, ad esempio per mandrini ad altissima velocità, in cui le forze centrifughe possono allentare l'anello interno nella sua sede sull'albero. Queste disposizioni di cuscinetti devono essere analizzate molto attentamente.

Tabella 3

Precarico assiale di cuscinetti singoli per montaggio universale e coppie di cuscinetti appaiati prima del montaggio, in disposizione ad "O" oppure ad "X"





Cuscinetto Foro diametro

Precarico assiale
Dimensioni di cuscinetti serie

di cuscinetti serie 718 ACD (SEA CE3) 718 ACD/HC (SEA/NS CE3) per classe di precarico

718 CD (SEA CE1) 718 CD/HC (SEA /NS CE1) per classe di precarico A B C

| mm  | _  | N   |       |       |     |     |       |
|-----|----|-----|-------|-------|-----|-----|-------|
| 10  | 00 | 16  | 48    | 100   | 10  | 30  | 60    |
| 12  | 01 | 17  | 53    | 105   | 11  | 33  | 66    |
| 15  | 02 | 19  | 58    | 115   | 12  | 36  | 72    |
| 17  | 03 | 20  | 60    | 120   | 12  | 37  | 75    |
| 20  | 04 | 32  | 100   | 200   | 20  | 60  | 120   |
| 25  | 05 | 35  | 105   | 210   | 22  | 66  | 132   |
| 30  | 06 | 37  | 110   | 220   | 23  | 70  | 140   |
| 35  | 07 | 39  | 115   | 230   | 25  | 75  | 150   |
| 40  | 08 | 40  | 120   | 240   | 26  | 78  | 155   |
| 45  | 09 | 41  | 125   | 250   | 27  | 80  | 160   |
| 50  | 10 | 60  | 180   | 360   | 40  | 120 | 240   |
| 55  | 11 | 87  | 260   | 520   | 55  | 165 | 330   |
| 60  | 12 | 114 | 340   | 680   | 70  | 210 | 420   |
| 65  | 13 | 115 | 345   | 690   | 71  | 215 | 430   |
| 70  | 14 | 117 | 350   | 700   | 73  | 220 | 440   |
| 75  | 15 | 120 | 360   | 720   | 76  | 225 | 450   |
| 80  | 16 | 123 | 370   | 740   | 78  | 235 | 470   |
| 85  | 17 | 183 | 550   | 1 100 | 115 | 345 | 690   |
| 90  | 18 | 184 | 555   | 1 110 | 116 | 350 | 700   |
| 95  | 19 | 186 | 560   | 1 120 | 117 | 355 | 710   |
| 100 | 20 | 190 | 570   | 1 140 | 120 | 360 | 720   |
| 105 | 21 | 200 | 600   | 1 200 | 130 | 390 | 780   |
| 110 | 22 | 260 | 800   | 1 600 | 160 | 500 | 1 000 |
| 120 | 24 | 280 | 850   | 1 700 | 180 | 550 | 1 100 |
| 130 | 26 | 325 | 980   | 1960  | 210 | 620 | 1 230 |
| 140 | 28 | 380 | 1 140 | 2 280 | 240 | 720 | 1 440 |
| 150 | 30 | 430 | 1 300 | 2 590 | 270 | 820 | 1 630 |
| 160 | 32 | 450 | 1 350 | 2 690 | 280 | 850 | 1 700 |

#### Precarico con forza costante

Nelle applicazioni di precisione a velocità elevate è importante garantire un precarico costante ed uniforme. Per mantenere il giusto precarico, si possono montare molle lineari calibrate tra un anello esterno del cuscinetto e lo spallamento dell'alloggiamento ( $\rightarrow$  fig. 1). Grazie alle molle, il comportamento cinematico del cuscinetto non influirà sul precarico, in condizioni normali di esercizio. Si ricorda, tuttavia, che una disposizione di cuscinetti caricata mediante molla presenta un grado di rigidezza minore rispetto ad una disposizione che sfrutta lo spostamento assiale per ottenere il precarico.

#### Tabella 4 Fattore f del cuscinetto per calcolare il precarico in gruppi di cuscinetti dopo il montaggio Fattore f del Cuscinetto cuscinetto Diametro Dimensioni foro Ч mm 10 00 1,05 12 15 17 01 1,06 02 1.08 03 1,10 20 04 1,08 25 30 05 1,11 06 1.14 35 07 1,18 40 08 1,23 45 50 09 1,24 10 1,30 1,27 55 11 12 13 60 1,30 65 1,28 70 14 1,32 75 15 1,36 80 16 1,41 85 17 1,31 90 18 1,33 95 19 1,36 100 20 1,40 105 21 1,44 22 1,34 110 120 24 1,41 130 26 1,34 140 28 1,43 150 30 1,37 160 1.42

## Precarico mediante spostamento assiale

La rigidezza e la guida assiale di precisione sono parametri critici nelle disposizioni di cuscinetti, soprattutto in presenza di forze assiali alternate. In questi casi, il precarico nei cuscinetti si ottiene, solitamente, registrando reciprocamente gli anelli del cuscinetto in direzione assiale. Questo metodo per ottenere il precarico offre vantaggi significativi in termini di rigidezza di sistema. Tuttavia, in base al tipo di cuscinetti e materiale delle sfere, il precarico aumenta considerevolmente con la velocità rotazionale.

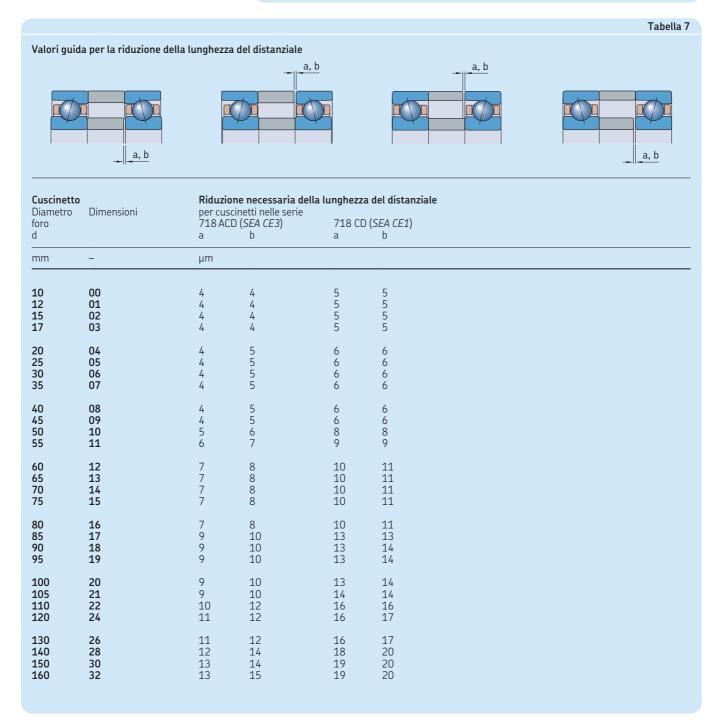
I cuscinetti per montaggio universale ed i gruppi di cuscinetti appaiati sono prodotti secondo determinate specifiche, cosicché, se montati idoneamente, si ottiene lo spostamento assiale predeterminato e, di conseguenza, il precarico idoneo. Nel caso dei cuscinetti singoli standard, si devono utilizzare distanziali accoppiati di precisione.

# Fig. 1

## Regolazione individuale del precarico mediante distanziali

In presenza di determinate condizioni di esercizio, può essere necessario ottimizzare il precarico di un gruppo di cuscinetti. Il precarico può essere aumentato o diminuito inserendo distanziali tra i cuscinetti. L'impiego di distanziali nei gruppi di cuscinetti obliqui a sfere si è rivelato vantaggioso anche quando:

- è necessario aumentare la rigidezza di sistema
- gli ugelli per la lubrificazione olio-aria devono essere il più vicino possibile alle piste del cuscinetto
- è necessario uno spazio sufficientemente ampio per il grasso in eccesso, per ridurre la produzione di calore da parte dei cuscinetti


Il precarico nel cuscinetto può essere variato rettificando la faccia laterale del distanziale interno od esterno.

Nella **tabella 6** sono riportate informazioni in merito a quale distanziale ridurre e sugli effetti di tale operazione. I valori guida per la riduzione necessaria della lunghezza totale dei distanziali sono elencati nella **tabella 7**.

Per ottenere le migliori prestazioni dei cuscinetti, i distanziali non devono subire deformazioni sotto carico. Devono essere realizzati in acciaio di alta qualità, che possa essere temprato per ottenere una durezza da 45 a 60 HRC. Si deve prestare particolare attenzione al parallelismo delle superfici della faccia laterale, per cui lo scostamento massimo ammissibile di forma non deve superare valori da 1 a 2  $\mu m$ .

|                                                                                            |                           |                                                   |                                    |            | Tabella 5       |  |  |
|--------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------------|------------------------------------|------------|-----------------|--|--|
| Fattore di correzione per calcolare il precarico in gruppi di cuscinetti dopo il montaggio |                           |                                                   |                                    |            |                 |  |  |
| Serie cuscinetto                                                                           | Fattori<br>f <sub>1</sub> | <b>di corre</b><br>f <sub>2</sub><br>per cla<br>A | <b>zione</b><br>asse di preca<br>B | arico<br>C | f <sub>HC</sub> |  |  |
| 718 CD (SEA CE1)                                                                           | 1                         | 1                                                 | 1,09                               | 1,16       | 1               |  |  |
| 718 ACD (SEA CE3)                                                                          | 0,97                      | 1                                                 | 1,08                               | 1,15       | 1               |  |  |
| 718 CD/HC (SEA /NS CE1)                                                                    | 1                         | 1                                                 | 1,10                               | 1,18       | 1,02            |  |  |
| 718 ACD/HC (SEA /NS CE3)                                                                   | 0,97                      | 1                                                 | 1,09                               | 1,17       | 1,02            |  |  |

|                                                       |                                            |                                                         | Tabella 6 |  |  |  |  |
|-------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|-----------|--|--|--|--|
| Linee guida per la modifica dei distanziali           |                                            |                                                         |           |  |  |  |  |
| <b>Gruppo di cuscinetti</b><br>Modifica del precarico | <b>Riduzione della lunghezza</b><br>Valore | Distanziale richies<br>tra cuscinetti in disp<br>ad "O" |           |  |  |  |  |
| Aumento del precarico                                 |                                            |                                                         |           |  |  |  |  |
| da A a B                                              | a                                          | interno                                                 | esterno   |  |  |  |  |
| da B a C                                              | b                                          | interno                                                 | esterno   |  |  |  |  |
| da A a C                                              | a + b                                      | interno                                                 | esterno   |  |  |  |  |
| Riduzione del precarico                               |                                            |                                                         |           |  |  |  |  |
| da B ad A                                             | a                                          | esterno                                                 | interno   |  |  |  |  |
| da C a B                                              | b                                          | esterno                                                 | interno   |  |  |  |  |
| da C ad A                                             | a + b                                      | esterno                                                 | interno   |  |  |  |  |



## Rigidezza assiale del cuscinetto

La rigidezza assiale dipende dalla deformazione del cuscinetto sotto carico e può essere espressa come il rapporto tra il carico e la resilienza del cuscinetto. Tuttavia, dato che la resilienza dei cuscinetti volventi non dipende linearmente dal carico, anche la rigidezza assiale è in funzione del carico. I valori esatti di rigidezza assiale per i cuscinetti della serie 718 (SEA), per un determinato carico, possono essere calcolati utilizzando metodi computerizzati all'avanguardia, ma i valori guida sono riportati nella tabella 8. Questi valori si applicano a gruppi di cuscinetti montati in condizioni statiche e composti da due cuscinetti completamente in acciaio disposti ad "O" oppure ad "X" e soggetti a carichi moderati.

I gruppi composti da tre o quattro cuscinetti possono garantire un grado maggiore di rigidezza assiale, rispetto ai gruppi con due cuscinetti. La rigidezza assiale di questi gruppi può essere calcolata moltiplicando i valori della **tabella 8** per un fattore che dipende dalla disposizione e dalla classe di precarico dei cuscinetti. Per i gruppi di cuscinetti prodotti nelle classi di precarico A, B o C, si applicano i seguenti fattori:

- 1,45 per disposizioni TBT (*TD*) e TFT (*TF*)
- 1,8 per disposizioni QBT (3TD) e QFT (3TF)
- 2 per disposizioni QBC (TDT) e QFC (TFT)

I gruppi di cuscinetti asimmetrici possono essere prodotti anche nelle classi di precarico L, M od F (→ *Precarico nei cuscinetti prima del montaggio*, **pagina 18**). Il grado di rigidezza per questi gruppi di cuscinetti può essere calcolato moltiplicando i valori riportati nella **tabella 8** per i seguenti fattori:

- 1,25 per disposizioni TBT (TD) e TFT (TF)
- 1,45 per disposizioni QBT (3TD) e QFT (3TF)

Nei cuscinetti ibridi, la rigidezza assiale può essere calcolata nello stesso modo utilizzato per i cuscinetti con sfere in acciaio, ma il valore ottenuto dovrà poi essere moltiplicato per un fattore pari a 1,11 (per tutte le disposizioni e classi di precarico).

Tabella 8

Rigidezza assiale statica per due cuscinetti in disposizione ad "O" oppure ad "X"





| <b>Cuscinetto</b><br>Foro<br>diametro<br>d | Dimensioni           | di cuso<br>718 A0        | zza assia<br>inetti nel<br>CD (SEA (<br>sse di pre<br>B | le serie<br>CE3)         | 718 C<br>per cla<br>A    | D ( <i>SEA Cl</i><br>Isse di pro<br>B | E1)<br>ecarico<br>C      |  |
|--------------------------------------------|----------------------|--------------------------|---------------------------------------------------------|--------------------------|--------------------------|---------------------------------------|--------------------------|--|
| mm                                         | -                    | N/µm                     |                                                         |                          |                          |                                       |                          |  |
| 10<br>12<br>15<br>17                       | 00<br>01<br>02<br>03 | 30<br>34<br>40<br>43     | 47<br>54<br>63<br>67                                    | 65<br>72<br>85<br>90     | 13<br>15<br>17<br>18     | 22<br>25<br>30<br>31                  | 32<br>37<br>43<br>45     |  |
| 20<br>25<br>30<br>35                       | 04<br>05<br>06<br>07 | 52<br>60<br>69<br>76     | 83<br>95<br>106<br>119                                  | 112<br>128<br>144<br>161 | 22<br>26<br>29<br>32     | 38<br>44<br>49<br>56                  | 55<br>64<br>72<br>82     |  |
| 40<br>45<br>50<br>55                       | 08<br>09<br>10<br>11 | 83<br>87<br>107<br>124   | 130<br>139<br>168<br>195                                | 178<br>189<br>231<br>268 | 36<br>38<br>47<br>53     | 61<br>65<br>81<br>91                  | 90<br>95<br>119<br>135   |  |
| 60<br>65<br>70<br>75                       | 12<br>13<br>14<br>15 | 141<br>144<br>152<br>162 | 222<br>227<br>241<br>257                                | 306<br>312<br>332<br>355 | 59<br>61<br>65<br>69     | 103<br>105<br>112<br>119              | 152<br>155<br>166<br>177 |  |
| 80<br>85<br>90<br>95                       | 16<br>17<br>18<br>19 | 171<br>189<br>194<br>200 | 274<br>296<br>307<br>316                                | 379<br>406<br>420<br>436 | 74<br>79<br>82<br>85     | 128<br>137<br>142<br>147              | 191<br>202<br>210<br>218 |  |
| 100<br>105<br>110<br>120                   | 20<br>21<br>22<br>24 | 211<br>220<br>236<br>262 | 335<br>353<br>377<br>417                                | 462<br>488<br>518<br>576 | 90<br>96<br>99<br>112    | 156<br>167<br>173<br>196              | 231<br>250<br>256<br>291 |  |
| 130<br>140<br>150<br>160                   | 26<br>28<br>30<br>32 | 278<br>306<br>323<br>352 | 439<br>489<br>512<br>556                                | 603<br>675<br>702<br>764 | 119<br>130<br>136<br>147 | 202<br>226<br>236<br>256              | 296<br>336<br>346<br>379 |  |

## Accoppiamento e serraggio degli anelli del cuscinetto

Di norma, i cuscinetti vengono vincolati assialmente sugli alberi o negli alloggiamenti mediante ghiere di bloccaggio di precisione ( $\rightarrow$  fig. 2) o coperchi di estremità. Per garantire un bloccaggio affidabile, questi componenti richiedono un'elevata precisione geometrica ed una buona resistenza meccanica.

La coppia di serraggio  $M_{\rm t}$ , che si ottiene serrando la ghiera di bloccaggio od il bullone nel coperchio di estremità, serve ad impedire il movimento dei componenti adiacenti, garantire un corretto posizionamento del cuscinetto senza deformazioni e rendere minima la fatica del materiale.

## Calcolo della coppia di serraggio M<sub>t</sub>

 $E^{\prime}$  difficile calcolare accuratamente la coppia di serraggio  $M_t$ . Le formule seguenti possono essere utilizzate come linee guida, ma dovranno essere verificate in esercizio.

La forza di serraggio assiale per una ghiera di bloccaggio di precisione o per i bulloni del coperchio di estremità è data da

$$P_a = F_s + (N_{cp}F_c) + G$$

La coppia di serraggio per una ghiera di bloccaggio di precisione è data da

$$\begin{aligned} \mathsf{M}_{\mathsf{t}} &= \mathsf{K} \, \mathsf{P}_{\mathsf{a}} \\ &= \mathsf{K} \, \big[ \mathsf{F}_{\mathsf{s}} + \big( \mathsf{N}_{\mathsf{cp}} \mathsf{F}_{\mathsf{c}} \big) + \mathsf{G} \big] \end{aligned}$$

La coppia di serraggio per i bulloni nel coperchio di estremità è data da

$$M_t = \frac{K P_a}{N_b}$$

$$M_t = \frac{K[F_s + (N_{cp}F_c) + G]}{N_h}$$

dove

M<sub>t</sub> = coppia di serraggio [Nmm]

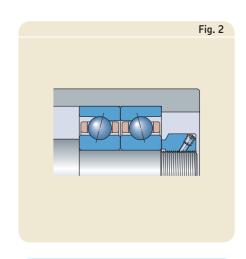
P<sub>a</sub> = forza di serraggio assiale [N]

F<sub>s</sub> = forza di serraggio assiale minima (→ tabella 9) [N]

F<sub>c</sub> = forza di accoppiamento assiale (→ tabella 9) [N]

G = precarico del cuscinetto prima del montaggio (→ tabella 3, a pagina 19) [N]

N<sub>cp</sub> = numero di cuscinetti precaricati


N<sub>b</sub> = numero di bulloni nel coperchio di estremità

K = un fattore di calcolo determinato dalla filettatura (→ tabella 10)



Forza di serraggio assiale minima e forza di accoppiamento assiale per ghiere di bloccaggio di precisione e coperchi di estremità

| Cuscinetto<br>Foro<br>diametro<br>d | <b>o</b><br>Dimensioni | Forza di<br>serraggio<br>assiale<br>minima<br>F <sub>s</sub> | Forza di<br>accoppia-<br>mento<br>assiale<br>F <sub>c</sub> |
|-------------------------------------|------------------------|--------------------------------------------------------------|-------------------------------------------------------------|
| mm                                  | _                      | N                                                            |                                                             |
| 10                                  | 00                     | 370                                                          | 240                                                         |
| 12                                  | 01                     | 430                                                          | 210                                                         |
| 15                                  | 02                     | 550                                                          | 180                                                         |
| 17                                  | 03                     | 600                                                          | 160                                                         |
| 20                                  | 04                     | 950                                                          | 250                                                         |
| 25                                  | 05                     | 1 200                                                        | 210                                                         |
| 30                                  | 06                     | 1 400                                                        | 180                                                         |
| 35                                  | 07                     | 1 600                                                        | 210                                                         |
| 40                                  | 08                     | 1 800                                                        | 180                                                         |
| 45                                  | 09                     | 2 400                                                        | 190                                                         |
| 50                                  | 10                     | 2 900                                                        | 180                                                         |
| 55                                  | 11                     | 3 300                                                        | 230                                                         |
| 60                                  | 12                     | 3 300                                                        | 240                                                         |
| 65                                  | 13                     | 4 700                                                        | 260                                                         |
| 70                                  | 14                     | 5 000                                                        | 240                                                         |
| 75                                  | 15                     | 5 500                                                        | 230                                                         |
| 80                                  | 16                     | 5 500                                                        | 300                                                         |
| 85                                  | 17                     | 7 500                                                        | 550                                                         |
| 90                                  | 18                     | 8 000                                                        | 500                                                         |
| 95                                  | 19                     | 8 000                                                        | 480                                                         |
| 100                                 | 20                     | 8 500                                                        | 460                                                         |
| 105                                 | 21                     | 9 000                                                        | 450                                                         |
| 110                                 | 22                     | 11 000                                                       | 600                                                         |
| 120                                 | 24                     | 12 000                                                       | 600                                                         |
| 130                                 | 26                     | 17 000                                                       | 900                                                         |
| 140                                 | 28                     | 16 000                                                       | 800                                                         |
| 150                                 | 30                     | 21 000                                                       | 1 000                                                       |
| 160                                 | 32                     | 23 000                                                       | 1 000                                                       |



|  | ·lla |  |
|--|------|--|
|  |      |  |
|  |      |  |

Fattore K per calcolare la coppia di serraggio

Filettatura nominale Fattore K

| filettatura nominale<br>diametro <sup>1)</sup> | per<br>ghiere di<br>bloccaggio<br>di precisione | coperchi di              |
|------------------------------------------------|-------------------------------------------------|--------------------------|
| mm                                             | -                                               |                          |
| 4<br>5<br>6<br>8                               | -<br>-<br>-<br>-                                | 0,8<br>1,0<br>1,2<br>1,6 |
| 10<br>12<br>14<br>15                           | 1,4<br>1,6<br>1,9<br>2,0                        | 2,0<br>2,4<br>2,7<br>2,9 |
| 16<br>17<br>20<br>25                           | 2,1<br>2,2<br>2,6<br>3,2                        | 3,1<br>-<br>-<br>-       |
| 30<br>35<br>40<br>45                           | 3,9<br>4,5<br>5,1<br>5,8                        | -<br>-<br>-              |
| 50<br>55<br>60<br>65                           | 6,4<br>7,0<br>7,6<br>8,1                        | -<br>-<br>-              |
| 70<br>75<br>80<br>85                           | 9,0<br>9,6<br>10,0<br>11,0                      | -<br>-<br>-<br>-         |
| 90<br>95<br>100<br>105                         | 11,0<br>12,0<br>12,0<br>13,0                    | -<br>-<br>-              |
| 110<br>120<br>130<br>140                       | 14,0<br>15,0<br>16,0<br>17,0                    | -<br>-<br>-              |
| 150<br>160                                     | 18,0<br>19,0                                    | -                        |
|                                                |                                                 |                          |

## Capacità di carico dei gruppi di cuscinetti

I valori nelle tabelle di prodotto per il coefficiente di carico dinamico base  $C_0$  il coefficiente di carico statico base  $C_0$  ed il limite di carico a fatica  $P_u$  sono validi per cuscinetti singoli. Per quanto riguarda i gruppi di cuscinetti, si devono moltiplicare i valori per i cuscinetti singoli per uno dei fattori di calcolo riportati nella **tabella 11**.

## Carichi equivalenti sul cuscinetto

Nel determinare il carico equivalente sul cuscinetto per i cuscinetti precaricati della serie 718 (SEA), si deve tenere in considerazione il precarico. In base alla condizioni di esercizio, la componente assiale richiesta del carico sul cuscinetto  $F_a$ , per una coppia di cuscinetti disposti ad "O" oppure ad "X", può essere approssimativamente calcolata con le formule seguenti.

Per coppie di cuscinetti sottoposte a carico radiale e montate con interferenza

$$F_a = G_m$$

Per coppie di cuscinetti sottoposte a carico radiale e precaricate mediante molle

$$F_a = G_{A.B.C}$$

Per coppie di cuscinetti sottoposte a carico assiale e montate con interferenza

$$\begin{aligned} F_a &= G_m + 0.67 \ K_a & \text{per } K_a \leq 3 \ G_m \\ F_a &= K_a & \text{per } K_a > 3 \ G_m \end{aligned}$$

Per coppie di cuscinetti sottoposte a carico assiale e precaricate mediante molle

$$F_a = G_{ABC} + K_a$$

dove

F<sub>a</sub> = componente assiale del carico [N]

G<sub>A,B,C</sub> = precarico di una coppia di cuscinetti prima del montaggio (→ tabella 3, a pagina 19) [N]

G<sub>m</sub> = precarico nella coppia di cuscinetti dopo il montaggio (→ *Precarico in* gruppi di cuscinetti dopo il montaggio, pagina 19) [N]

K<sub>a</sub> = forza assiale esterna che agisce su un singolo cuscinetto [N]

## Carico dinamico equivalente sul cuscinetto

Per cuscinetti singoli e cuscinetti appaiati in tandem

$$P = F_r$$
 per  $F_a/F_r \le e$   
 $P = XF_r + YF_a$  per  $F_a/F_r > e$ 

Per coppie di cuscinetti, disposte ad "0" od a "X"

$$P = F_r + Y_1 F_a per F_a / F_r \le e$$

$$P = XF_r + Y_2 F_a per F_a / F_r > e$$

dove

P = carico dinamico equivalente del gruppo di cuscinetti [kN]

F<sub>r</sub> = componente radiale del carico che agisce sul gruppo di cuscinetti [kN]

F<sub>a</sub> = componente assiale del carico che agisce sul gruppo di cuscinetti [kN]

I valori per i fattori di calcolo e, X, Y,  $Y_1$  e  $Y_2$  dipendono dall'angolo di contatto del cuscinetto e sono riportati nelle **tabelle 12** e **13**. Per i cuscinetti con un angolo di contatto di  $15^\circ$ , i fattori dipendono anche dalla relazione  $f_0F_a/C_0$ , dove  $f_0$  e  $C_0$  sono rispettivamente il fattore di calcolo ed il coefficiente di carico statico base, riportati nella tabella di prodotto.

## Carico statico equivalente sul cuscinetto

Per cuscinetti singoli e cuscinetti appaiati in tandem

$$P_0 = 0.5 F_r + Y_0 F_a$$

Per coppie di cuscinetti, disposte ad "0" od a "X"

$$P_0 = F_r + Y_0 F_a$$

dove

P<sub>0</sub> = carico statico equivalente del gruppo di cuscinetti [kN]

F<sub>r</sub> = componente radiale del carico che agisce sul gruppo di cuscinetti [kN]

F<sub>a</sub> = componente assiale del carico che agisce sul gruppo di cuscinetti [kN]

Se  $P_0 < F_p$  si dovrebbe applicare  $P_0 = F_p$ . I valori per il fattore di calcolo  $Y_0$  dipendono dall'angolo di contatto del cuscinetto e sono riportati nelle **tabelle 12** e **13**.

## Tabella 11 Fattori di calcolo per la capacità di carico di gruppi di cuscinetti

| Numero<br>dei cuscinetti | Fattore o | li calcol | o  |
|--------------------------|-----------|-----------|----|
|                          | per<br>C  | Co        | Pu |
|                          |           |           |    |
| 2                        | 1,62      | 2         | 2  |
| 3                        | 2,16      | 3         | 3  |
| 4                        | 2,64      | 4         | 4  |
|                          |           |           |    |

## Fattori di calcolo per cuscinetti singoli e cuscinetti appaiati in tandem

| $f_0F_a/C_0$                                                          | Fattori d                    | di calcolo                   |                              |                              |
|-----------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
|                                                                       | е                            | Χ                            | Υ                            | Y <sub>0</sub>               |
| Per angolo di contatto di 15° suffisso nella denominazione CD (1)     |                              |                              |                              |                              |
| ≤ 0,178<br>0,357<br>0,714<br>1,07                                     | 0,38<br>0,40<br>0,43<br>0,46 | 0,44<br>0,44<br>0,44         | 1,47<br>1,40<br>1,30<br>1,23 | 0,46<br>0,46<br>0,46<br>0,46 |
| 1,43<br>2,14<br>3,57<br>≥ 5,35                                        | 0,47<br>0,50<br>0,55<br>0,56 | 0,44<br>0,44<br>0,44<br>0,44 | 1,19<br>1,12<br>1,02<br>1,00 | 0,46<br>0,46<br>0,46<br>0,46 |
| Per angolo di contatto di 25°<br>suffisso nella denominazione ACD (3) | 0.68                         | 0.41                         | 0.87                         | 0.38                         |

Tabella 12

## Velocità possibili

I valori relativi alle velocità che si possono raggiungere – e che sono riportati nelle tabelle di prodotto – dovrebbero essere considerati come valori guida. Si applicano a cuscinetti singoli sottoposti a carico leggero, ( $P \le 0.05$  C), che sono leggermente precaricati mediante molle. Inoltre, uno dei requisiti fondamentali è una buona capacità di dissipazione del calore.

I valori indicati per la lubrificazione ad olio, si riferiscono al metodo di lubrificazione olioaria; se si adotta un altro sistema di lubrificazione ad olio tali valori dovrebbero essere ridotti. I valori indicati per la lubrificazione a grasso sono quelli massimi che si possono ottenere con un buon grasso di lubrificazione a bassa consistenza e viscosità.

Se cuscinetti singoli vengono registrati reciprocamente con un precarico pesante o se si utilizzano gruppi di cuscinetti, le velocità possibili, riportate nella tabella di prodotto, dovranno essere ridotte, cioè i valori dovranno

essere moltiplicati per un fattore di riduzione. I valori per il fattore di riduzione, che è determinato dalla disposizione di cuscinetti e dalla classe di precarico, sono riportati nella **tabella 14**.

Se la velocità rotazionale ottenuta non è sufficiente per l'applicazione, si possono integrare distanziali nel gruppo di cuscinetti, per aumentare la capacità di sopportare la velocità.

## Gabbie

I cuscinetti obliqui a sfere Super-precision SKF serie 718 (SEA) sono dotati di gabbia monoblocco guidata dallo spallamento dell'anello esterno, in resina fenolica con rinforzo in tessuto, ( $\rightarrow$  fig. 3), che è idonea per temperature fino a 120 °C.

## Materiali

Gli anelli e le sfere dei cuscinetti obliqui a sfere completamente in acciaio della serie 718 (SEA) sono prodotti con acciaio SKF grado 3, conformemente alla ISO 683-17:1999. Le sfere dei cuscinetti ibridi sono realizzate in nitruro di silicio di alta qualità per cuscinetti Si<sub>3</sub>N<sub>4</sub>.

## Trattamento termico

Tutti i cuscinetti obliqui a sfere di superprecisione SKF della serie 718 (SEA) vengono sottoposti ad un trattamento termico per ottenere un buon equilibrio tra durezza e stabilità dimensionale. La durezza degli anelli ed elementi volventi viene ottimizzata per ridurre il tasso di usura.

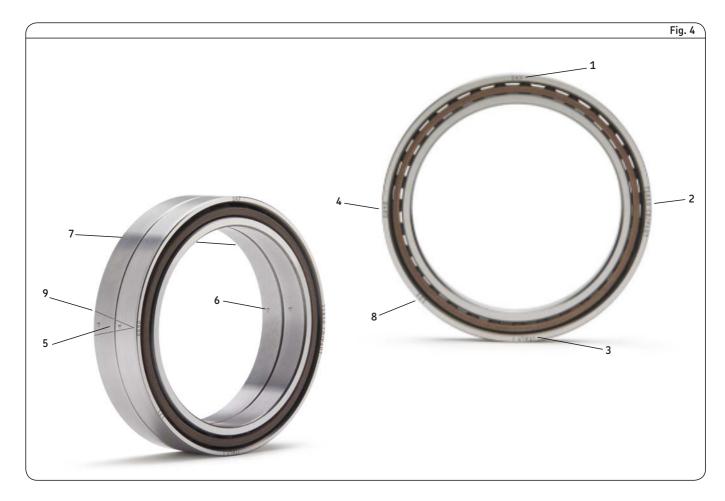
|                                                                      |                              |                              |                |                | Tabella 13                   |
|----------------------------------------------------------------------|------------------------------|------------------------------|----------------|----------------|------------------------------|
| Fattori di calcolo per coppie di cuscinetti,                         | , disposte a                 | d "O" od a                   | "X"            |                |                              |
| $2 f_0 F_a / C_0$                                                    | Fattori                      | di calcolo                   |                |                |                              |
|                                                                      | е                            | Χ                            | Y <sub>1</sub> | Y <sub>2</sub> | Y <sub>0</sub>               |
| Per angolo di contatto di 15°<br>suffisso nella denominazione CD (1) |                              |                              |                |                |                              |
| ≤ 0,178<br>0,357<br>0,714<br>1,07                                    | 0,38<br>0,40<br>0,43<br>0,46 | 0,72<br>0,72<br>0,72<br>0,72 | ,              |                | 0,92<br>0,92<br>0,92<br>0,92 |
| 1,43<br>2,14<br>3,57<br>≥ 5,35                                       | 0,47<br>0,50<br>0,55<br>0,56 | 0,72<br>0,72<br>0,72<br>0,72 | , .            |                | 0,92<br>0,92<br>0,92<br>0,92 |
| Per angolo di contatto di 25° suffisso nella denominazione ACD (3) – | 0,68                         | 0,67                         | 0,92           | 1,41           | 0,76                         |



| Numero<br>dei cuscinetti | Disposizione                                                         | Suffisso nella<br>denominazione          |              |              |              |              |              |              |
|--------------------------|----------------------------------------------------------------------|------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                          | _                                                                    | denominazione                            | A            | L            | В            | М            | С            | F            |
| 2                        | Disposizione ad "O"<br>Disposizione ad "X"                           | DB ( <i>DD</i> )<br>DF ( <i>FF</i> )     | 0,80<br>0,77 | -<br>-       | 0,65<br>0,61 | -<br>-       | 0,40<br>0,36 | -<br>-       |
| 3                        | Disposizione ad "O" ed in tandem<br>Disposizione ad "X" ed in tandem | TBT ( <i>TD</i> )<br>TFT ( <i>TF</i> )   | 0,69<br>0,63 | 0,72<br>0,66 | 0,49<br>0,42 | 0,58<br>0,49 | 0,25<br>0,17 | 0,36<br>0,24 |
| 4                        | Disposizione ad "O" in tandem<br>Disposizione ad "X" in tandem       | QBC ( <i>TDT</i> )<br>QFC ( <i>TFT</i> ) | 0,64<br>0,62 | -            | 0,53<br>0,48 | -<br>-       | 0,32<br>0,27 |              |

## Marcatura dei cuscinetti e dei gruppi di cuscinetti

Tutti i cuscinetti obliqui a sfere Superprecision SKF serie 718 (*SEA*) sono dotati di vari elementi di identificazione sulle superfici esterne degli anelli ( $\rightarrow$  fig. 4):


- 1 Marchio di fabbrica SKF
- 2 Denominazione completa del cuscinetto
- 3 Paese di produzione
- 4 Data di produzione, codificata
- 5 Scostamento del diametro esterno medio ΔD<sub>m</sub> [μm], e posizione dell'eccentricità massima dell'anello esterno
- 6 Scostamento del diametro foro medio Δd<sub>m</sub> [μm], e posizione dell'eccentricità massima dell'anello interno
- 7 Marchio su faccia assiale (punzonatura)
- 8 Numero di serie
- **9** Marchio a forma di "V" (solo gruppi di cuscinetti appaiati)

#### Marchio a forma di "V"

Questo elemento di identificazione supplementare nei gruppi di cuscinetti appaiati fornisce importanti informazioni sulla sequenza di montaggio e sulla direzione del carico. Si tratta di un marchio a forma di "V", che risulta chiaramente visibile sul diametro esterno degli anelli esterni e si estende a tutti i cuscinetti del gruppo ( $\rightarrow$  fig. 5).

Il marchio a forma di "V" coincide con il punto di massimo spessore della parete dell'anello. Il marchio indica in che modo i cuscinetti dovrebbero essere montati per ottenere il precarico idoneo ed indica, inoltre, la direzione in cui la principale componente assiale del carico F<sub>a</sub> agirà sugli anelli interni.





## Confezioni

I cuscinetti SKF Super-precision sono commercializzati in confezioni con una nuova grafica SKF ( $\rightarrow$  fig. 6). La confezione contiene un foglio di istruzioni con informazioni sul montaggio.

## Sistema di denominazione

Il sistema di denominazione per i cuscinetti obliqui a sfere Super-precision SKF serie 718 (SEA) è indicato, accompagnato dalle definizioni, nella **tabella 15** alle pagine **28** e **29**.



#### Sistema di denominazione della SKF per i cuscinetti obliqui a sfere Super-precision SKF serie 718 (SEA)

Cuscinetto singolo: 71830 CDGB/P2

| 718 30 CD GB / | P2 |  |
|----------------|----|--|
|----------------|----|--|

|   | Serie | Dimensioni | Angolo di<br>contatto | Esecuzione (solo cuscinetti singoli) |   | Materiale<br>per le sfere | Classe di<br>tolleranza | Disposizione | Precarico |
|---|-------|------------|-----------------------|--------------------------------------|---|---------------------------|-------------------------|--------------|-----------|
| : | 718   | 10         | ACD                   |                                      | / | нс                        | P4                      | QBC          | Α         |

Gruppo di cuscinetti appaiati: 71810 ACD/HCP4QBCA

Serie cuscinetto

718 Secondo la Serie Dimensionale 18

Dimensioni cuscinetto

diametro foro 10 mm 00 01 diametro foro 12 mm 02 diametro foro 15 mm 03 diametro foro 17 mm 04 diametro foro (x5) 20 mm al 32 diametro foro (x5) 160 mm

Angolo di contatto e design interno

angolo di contatto di 15°, design base angolo di contatto di 25°, design base ACD

Cuscinetto singolo - execution and preload

Single bearing (no designation suffix) GA Single, universally matchable, for light preload GB Single, universally matchable, for moderate preload GC Single, universally matchable, for heavy preload

Materiale per le

sfere

QT

QG

Acciaio al carbonio cromo (nessun suffisso nella denominazione) HC Nitruro di silicio di qualità per cuscinetti Si<sub>3</sub>N<sub>4</sub> (cuscinetti ibridi)

Classe di tolleranza

P4 Precisione dimensionale e di rotazione secondo la classe 4 di tolleranza ISO P2 Precisione dimensionale e di rotazione secondo la classe 2 di tolleranza ISO

Disposizione gruppo di cuscinetti

DB Due cuscinetti disposti ad "0" <> DF Due cuscinetti disposti ad "X" >< DT Due cuscinetti disposti in tandem << Due cuscinetti per montaggio universale Tre cuscinetti disposti ad "0" ed in tandem <>> DG TBT **TFT** Tre cuscinetti disposti ad "X" ed in tandem ><< TT Tre cuscinetti disposti in tandem <<< TG Tre cuscinetti per montaggio universale QBC Quattro cuscinetti disposti ad "O" in tandem <>>> QFC Quattro cuscinetti disposti ad "X" in tandem >><< Quattro cuscinetti disposti ad "0" ed in tandem <>>> QBT QFT Quattro cuscinetti disposti ad "X" ed in tandem ><<<

Quattro cuscinetti disposti in tandem <<<<

Quattro cuscinetti per montaggio universale

Precarico del gruppo di cuscinetti

Precarico leggero

Precarico leggero (solo per gruppi di cuscinetti in disposizione TBT, TFT, QBT e QFT)

В Precarico medio

М Precarico medio (solo per gruppi di cuscinetti in disposizione TBT, TFT, QBT e QFT)

C Precarico pesante

Precarico pesante (solo per gruppi di cuscinetti in disposizione TBT, TFT, QBT e QFT)

G... Precarico speciale, espresso in daN, ad es. G240

#### Vecchio sistema di denominazione SNFA per i cuscinetti obliqui a sfere Super-precision serie 718 (SEA)

Cuscinetto singolo: SEA 150 9 CE 1 U M

Serie Dimensioni Materiale per Classe di tolleranza Gabbia Angolo di contatto Disposizione Precarico

|                                                         | Serie | Dimensioni | le sfere | tolleranza | Gabbia | contatto | Disposizione | Precarico |
|---------------------------------------------------------|-------|------------|----------|------------|--------|----------|--------------|-----------|
| Gruppo di cuscinetti appa-<br>iati: SEA50 /NS 7CE3 TDTL | SEA   | 50         | /NS      | 7          | CE     | 3        | TDT          | L         |

Serie cuscinetto

**SEA** Secondo la Serie Dimensionale 18

Dimensioni cuscinetto

10 diametro foro 10 mm al 160 diametro foro 160 mm

#### Angolo di contatto e design interno

angolo di contatto di 15°, design base angolo di contatto di 25°, design base

#### Cuscinetto singolo

Standard, (nessun suffisso nella denominazione)
 Per montaggio universale con classe di precarico

#### Gabbia

#### Materiale per le

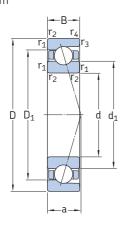
sfere

Acciaio al carbonio cromo (nessun suffisso nella denominazione)
 /NS Nitruro di silicio di qualità per cuscinetti Si<sub>3</sub>N<sub>4</sub> (cuscinetti ibridi)

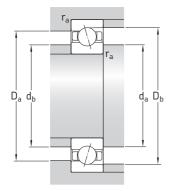
#### Classe di tolleranza

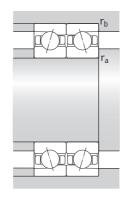
7 Precisione dimensionale e di rotazione secondo la classe ABEC 7 di tolleranza ABMA 9 Precisione dimensionale e di rotazione secondo la classe ABEC 9 di tolleranza ABMA

#### Disposizione gruppo di cuscinetti


DD Due cuscinetti disposti ad "0" <> FF Due cuscinetti disposti ad "X" >< Due cuscinetti disposti in tandem << Due cuscinetti per montaggio universale Tre cuscinetti disposti ad "O" ed in tandem <>> Tre cuscinetti disposti ad "X" ed in tandem ><< DU TD TF Tre cuscinetti disposti in tandem <<< **3T** TU Tre cuscinetti per montaggio universale TDT Quattro cuscinetti disposti ad "O" in tandem <>>> **TFT** 

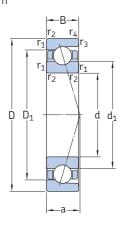
TFT Quattro cuscinetti disposti ad "X" in tandem >><
3TD Quattro cuscinetti disposti ad "O" ed in tandem >>>
3TF Quattro cuscinetti disposti ad "X" ed in tandem >>>
4T Quattro cuscinetti disposti in tandem <><<
4U Quattro cuscinetti per montaggio universale


#### Precarico del gruppo di cuscinetti

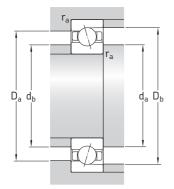

L Precarico leggero
M Precarico medio
F Precarico pesante
..daN Precarico speciale

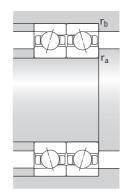
## Cuscinetti obliqui a sfere Super-precision serie 718 (SEA) d 10-45 mm




| Dimen | sioni d'ing | jombro | Coefficier<br>dinamico | nti di carico<br>statico | Carico limi<br>di fatica | te Velocità a<br>In caso di<br>grasso | ammissibili<br>lubrificazione o<br>olio-aria | <b>Massa</b><br>con | <b>Denominazioni</b><br>SKF | SNFA           |
|-------|-------------|--------|------------------------|--------------------------|--------------------------|---------------------------------------|----------------------------------------------|---------------------|-----------------------------|----------------|
| d     | D           | В      | С                      | $C_0$                    | $P_u$                    | 914330                                | ono ana                                      |                     |                             |                |
| mm    |             |        | kN                     |                          | kN                       | giri/min                              |                                              | kg                  | -                           |                |
| 10    | 19          | 5      | 1,9                    | 0,98                     | 0,043                    | 80 000                                | 120 000                                      | 0,005               | 71800 CD/P4                 | SEA10 7CE1     |
|       | 19          | 5      | 1,78                   | 0,93                     | 0,04                     | 70 000                                | 110 000                                      | 0,005               | 71800 ACD/P4                | SEA10 7CE3     |
|       | 19          | 5      | 1,9                    | 0,98                     | 0,043                    | 95 000                                | 150 000                                      | 0,005               | 71800 CD/HCP4               | SEA10 /NS 7CE1 |
|       | 19          | 5      | 1,78                   | 0,93                     | 0,04                     | 85 000                                | 130 000                                      | 0,005               | 71800 ACD/HCP4              | SEA10 /NS 7CE3 |
| 12    | 21          | 5      | 2,08                   | 1,18                     | 0,05                     | 70 000                                | 110 000                                      | 0,006               | 71801 CD/P4                 | SEA12 7CE1     |
|       | 21          | 5      | 1,95                   | 1,12                     | 0,048                    | 63 000                                | 95 000                                       | 0,006               | 71801 ACD/P4                | SEA12 7CE3     |
|       | 21          | 5      | 2,08                   | 1,18                     | 0,05                     | 85 000                                | 130 000                                      | 0,006               | 71801 CD/HCP4               | SEA12 /NS 7CE1 |
|       | 21          | 5      | 1,95                   | 1,12                     | 0,048                    | 75 000                                | 110 000                                      | 0,006               | 71801 ACD/HCP4              | SEA12 /NS 7CE3 |
| 15    | 24          | 5      | 2,29                   | 1,5                      | 0,063                    | 60 000                                | 90 000                                       | 0,007               | 71802 CD/P4                 | SEA15 7CE1     |
|       | 24          | 5      | 2,16                   | 1,4                      | 0,06                     | 53 000                                | 80 000                                       | 0,007               | 71802 ACD/P4                | SEA15 7CE3     |
|       | 24          | 5      | 2,29                   | 1,5                      | 0,063                    | 70 000                                | 110 000                                      | 0,006               | 71802 CD/HCP4               | SEA15 /NS 7CE1 |
|       | 24          | 5      | 2,16                   | 1,4                      | 0,06                     | 63 000                                | 100 000                                      | 0,006               | 71802 ACD/HCP4              | SEA15 /NS 7CE3 |
| 17    | 26          | 5      | 2,34                   | 1,6                      | 0,068                    | 53 000                                | 85 000                                       | 0,01                | 71803 CD/P4                 | SEA17 7CE1     |
|       | 26          | 5      | 2,21                   | 1,53                     | 0,064                    | 48 000                                | 75 000                                       | 0,01                | 71803 ACD/P4                | SEA17 7CE3     |
|       | 26          | 5      | 2,34                   | 1,6                      | 0,068                    | 63 000                                | 100 000                                      | 0,009               | 71803 CD/HCP4               | SEA17 /NS 7CE1 |
|       | 26          | 5      | 2,21                   | 1,53                     | 0,064                    | 60 000                                | 90 000                                       | 0,009               | 71803 ACD/HCP4              | SEA17 /NS 7CE3 |
| 20    | 32          | 7      | 3,9                    | 2,65                     | 0,112                    | 45 000                                | 70 000                                       | 0,018               | 71804 CD/P4                 | SEA20 7CE1     |
|       | 32          | 7      | 3,64                   | 2,5                      | 0,106                    | 40 000                                | 63 000                                       | 0,018               | 71804 ACD/P4                | SEA20 7CE3     |
|       | 32          | 7      | 3,9                    | 2,65                     | 0,112                    | 53 000                                | 80 000                                       | 0,017               | 71804 CD/HCP4               | SEA20 /NS 7CE1 |
|       | 32          | 7      | 3,64                   | 2,5                      | 0,106                    | 48 000                                | 75 000                                       | 0,017               | 71804 ACD/HCP4              | SEA20 /NS 7CE3 |
| 25    | 37          | 7      | 4,16                   | 3,2                      | 0,137                    | 38 000                                | 56 000                                       | 0,021               | 71805 CD/P4                 | SEA25 7CE1     |
|       | 37          | 7      | 3,9                    | 3,05                     | 0,129                    | 34 000                                | 53 000                                       | 0,021               | 71805 ACD/P4                | SEA25 7CE3     |
|       | 37          | 7      | 4,16                   | 3,2                      | 0,137                    | 45 000                                | 70 000                                       | 0,019               | 71805 CD/HCP4               | SEA25 /NS 7CE1 |
|       | 37          | 7      | 3,9                    | 3,05                     | 0,129                    | 40 000                                | 63 000                                       | 0,019               | 71805 ACD/HCP4              | SEA25 /NS 7CE3 |
| 30    | 42          | 7      | 4,42                   | 3,75                     | 0,16                     | 32 000                                | 50 000                                       | 0,026               | 71806 CD/P4                 | SEA30 7CE1     |
|       | 42          | 7      | 4,16                   | 3,55                     | 0,15                     | 28 000                                | 45 000                                       | 0,026               | 71806 ACD/P4                | SEA30 7CE3     |
|       | 42          | 7      | 4,42                   | 3,75                     | 0,16                     | 38 000                                | 60 000                                       | 0,024               | 71806 CD/HCP4               | SEA30 /NS 7CE1 |
|       | 42          | 7      | 4,16                   | 3,55                     | 0,15                     | 34 000                                | 53 000                                       | 0,024               | 71806 ACD/HCP4              | SEA30 /NS 7CE3 |
| 35    | 47          | 7      | 4,62                   | 4,3                      | 0,183                    | 28 000                                | 43 000                                       | 0,028               | 71807 CD/P4                 | SEA35 7CE1     |
|       | 47          | 7      | 4,36                   | 4,05                     | 0,173                    | 26 000                                | 40 000                                       | 0,028               | 71807 ACD/P4                | SEA35 7CE3     |
|       | 47          | 7      | 4,62                   | 4,3                      | 0,183                    | 34 000                                | 53 000                                       | 0,026               | 71807 CD/HCP4               | SEA35 /NS 7CE1 |
|       | 47          | 7      | 4,36                   | 4,05                     | 0,173                    | 30 000                                | 48 000                                       | 0,026               | 71807 ACD/HCP4              | SEA35 /NS 7CE3 |
| 40    | 52          | 7      | 4,88                   | 4,9                      | 0,208                    | 26 000                                | 38 000                                       | 0,031               | 71808 CD/P4                 | SEA40 7CE1     |
|       | 52          | 7      | 4,49                   | 4,55                     | 0,196                    | 22 000                                | 34 000                                       | 0,031               | 71808 ACD/P4                | SEA40 7CE3     |
|       | 52          | 7      | 4,88                   | 4,9                      | 0,208                    | 30 000                                | 45 000                                       | 0,029               | 71808 CD/HCP4               | SEA40 /NS 7CE1 |
|       | 52          | 7      | 4,49                   | 4,55                     | 0,196                    | 28 000                                | 43 000                                       | 0,029               | 71808 ACD/HCP4              | SEA40 /NS 7CE3 |
| 45    | 58          | 7      | 4,88                   | 5,3                      | 0,224                    | 22 000                                | 34 000                                       | 0,039               | 71809 CD/P4                 | SEA45 7CE1     |
|       | 58          | 7      | 4,62                   | 5                        | 0,212                    | 20 000                                | 30 000                                       | 0,039               | 71809 ACD/P4                | SEA45 7CE3     |
|       | 58          | 7      | 4,88                   | 5,3                      | 0,224                    | 26 000                                | 40 000                                       | 0,037               | 71809 CD/HCP4               | SEA45 /NS 7CE1 |
|       | 58          | 7      | 4,62                   | 5                        | 0,212                    | 24 000                                | 38 000                                       | 0,037               | 71809 ACD/HCP4              | SEA45 /NS 7CE3 |



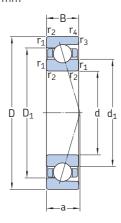




| Dimen | ısioni           |                  |                         |                         |      |                                        |                       | spalleggia<br>accoglie il |                       |                       | Fattore<br>per il calcolo |
|-------|------------------|------------------|-------------------------|-------------------------|------|----------------------------------------|-----------------------|---------------------------|-----------------------|-----------------------|---------------------------|
| d     | d <sub>1</sub> ~ | D <sub>1</sub> ~ | r <sub>1,2</sub><br>min | r <sub>3,4</sub><br>min | a    | d <sub>a</sub> , d <sub>b</sub><br>min | D <sub>a</sub><br>max | D <sub>b</sub><br>max     | r <sub>a</sub><br>max | r <sub>b</sub><br>max | f <sub>0</sub>            |
| mm    |                  |                  |                         |                         |      | mm                                     |                       |                           |                       |                       |                           |
| 10    | 13,1             | 16,1             | 0,3                     | 0,15                    | 4,5  | 12                                     | 17                    | 18,2                      | 0,3                   | 0,15                  | 15                        |
|       | 13,1             | 16,1             | 0,3                     | 0,15                    | 5,9  | 12                                     | 17                    | 18,2                      | 0,3                   | 0,15                  | -                         |
|       | 13,1             | 16,1             | 0,3                     | 0,15                    | 4,5  | 12                                     | 17                    | 18,2                      | 0,3                   | 0,15                  | 15                        |
|       | 13,1             | 16,1             | 0,3                     | 0,15                    | 5,9  | 12                                     | 17                    | 18,2                      | 0,3                   | 0,15                  | -                         |
| 12    | 15,1             | 18,1             | 0,3                     | 0,15                    | 4,7  | 14                                     | 19                    | 20,2                      | 0,3                   | 0,15                  | 15                        |
|       | 15,1             | 18,1             | 0,3                     | 0,15                    | 6,4  | 14                                     | 19                    | 20,2                      | 0,3                   | 0,15                  | -                         |
|       | 15,1             | 18,1             | 0,3                     | 0,15                    | 4,7  | 14                                     | 19                    | 20,2                      | 0,3                   | 0,15                  | 15                        |
|       | 15,1             | 18,1             | 0,3                     | 0,15                    | 6,4  | 14                                     | 19                    | 20,2                      | 0,3                   | 0,15                  | -                         |
| 15    | 18,1             | 21,1             | 0,3                     | 0,15                    | 5,1  | 17                                     | 22                    | 23,2                      | 0,3                   | 0,15                  | 16                        |
|       | 18,1             | 21,1             | 0,3                     | 0,15                    | 7,1  | 17                                     | 22                    | 23,2                      | 0,3                   | 0,15                  | -                         |
|       | 18,1             | 21,1             | 0,3                     | 0,15                    | 5,1  | 17                                     | 22                    | 23,2                      | 0,3                   | 0,15                  | 16                        |
|       | 18,1             | 21,1             | 0,3                     | 0,15                    | 7,1  | 17                                     | 22                    | 23,2                      | 0,3                   | 0,15                  | -                         |
| 17    | 20,1             | 23               | 0,3                     | 0,15                    | 5,4  | 19                                     | 24                    | 25,2                      | 0,3                   | 0,15                  | 16                        |
|       | 20,1             | 23               | 0,3                     | 0,15                    | 7,5  | 19                                     | 24                    | 25,2                      | 0,3                   | 0,15                  | -                         |
|       | 20,1             | 23               | 0,3                     | 0,15                    | 5,4  | 19                                     | 24                    | 25,2                      | 0,3                   | 0,15                  | 16                        |
|       | 20,1             | 23               | 0,3                     | 0,15                    | 7,5  | 19                                     | 24                    | 25,2                      | 0,3                   | 0,15                  | -                         |
| 20    | 24,1             | 28,1             | 0,3                     | 0,15                    | 7    | 22                                     | 30                    | 31,2                      | 0,3                   | 0,15                  | 16                        |
|       | 24,1             | 28,1             | 0,3                     | 0,15                    | 9,6  | 22                                     | 30                    | 31,2                      | 0,3                   | 0,15                  | -                         |
|       | 24,1             | 28,1             | 0,3                     | 0,15                    | 7    | 22                                     | 30                    | 31,2                      | 0,3                   | 0,15                  | 16                        |
|       | 24,1             | 28,1             | 0,3                     | 0,15                    | 9,6  | 22                                     | 30                    | 31,2                      | 0,3                   | 0,15                  | -                         |
| 25    | 29,1             | 33,1             | 0,3                     | 0,15                    | 7,7  | 27                                     | 35                    | 36,2                      | 0,3                   | 0,15                  | 16                        |
|       | 29,1             | 33,1             | 0,3                     | 0,15                    | 10,8 | 27                                     | 35                    | 36,2                      | 0,3                   | 0,15                  | -                         |
|       | 29,1             | 33,1             | 0,3                     | 0,15                    | 7,7  | 27                                     | 35                    | 36,2                      | 0,3                   | 0,15                  | 16                        |
|       | 29,1             | 33,1             | 0,3                     | 0,15                    | 10,8 | 27                                     | 35                    | 36,2                      | 0,3                   | 0,15                  | -                         |
| 30    | 34,1             | 38,1             | 0,3                     | 0,15                    | 8,3  | 32                                     | 40                    | 41,2                      | 0,3                   | 0,15                  | 17                        |
|       | 34,1             | 38,1             | 0,3                     | 0,15                    | 11,9 | 32                                     | 40                    | 41,2                      | 0,3                   | 0,15                  | -                         |
|       | 34,1             | 38,1             | 0,3                     | 0,15                    | 8,3  | 32                                     | 40                    | 41,2                      | 0,3                   | 0,15                  | 17                        |
|       | 34,1             | 38,1             | 0,3                     | 0,15                    | 11,9 | 32                                     | 40                    | 41,2                      | 0,3                   | 0,15                  | -                         |
| 35    | 39,1             | 43,1             | 0,3                     | 0,15                    | 9    | 37                                     | 45                    | 46,2                      | 0,3                   | 0,15                  | 17                        |
|       | 39,1             | 43,1             | 0,3                     | 0,15                    | 13,1 | 37                                     | 45                    | 46,2                      | 0,3                   | 0,15                  | -                         |
|       | 39,1             | 43,1             | 0,3                     | 0,15                    | 9    | 37                                     | 45                    | 46,2                      | 0,3                   | 0,15                  | 17                        |
|       | 39,1             | 43,1             | 0,3                     | 0,15                    | 13,1 | 37                                     | 45                    | 46,2                      | 0,3                   | 0,15                  | -                         |
| 40    | 44,1             | 48,1             | 0,3                     | 0,15                    | 9,7  | 42                                     | 50                    | 51,2                      | 0,3                   | 0,15                  | 17                        |
|       | 44,1             | 48,1             | 0,3                     | 0,15                    | 14,3 | 42                                     | 50                    | 51,2                      | 0,3                   | 0,15                  | -                         |
|       | 44,1             | 48,1             | 0,3                     | 0,15                    | 9,7  | 42                                     | 50                    | 51,2                      | 0,3                   | 0,15                  | 17                        |
|       | 44,1             | 48,1             | 0,3                     | 0,15                    | 14,3 | 42                                     | 50                    | 51,2                      | 0,3                   | 0,15                  | -                         |
| 45    | 49,6             | 53,6             | 0,3                     | 0,15                    | 10,4 | 47                                     | 56                    | 57,2                      | 0,3                   | 0,15                  | 17                        |
|       | 49,6             | 53,6             | 0,3                     | 0,15                    | 15,5 | 47                                     | 56                    | 57,2                      | 0,3                   | 0,15                  | -                         |
|       | 49,6             | 53,6             | 0,3                     | 0,15                    | 10,4 | 47                                     | 56                    | 57,2                      | 0,3                   | 0,15                  | 17                        |
|       | 49,6             | 53,6             | 0,3                     | 0,15                    | 15,5 | 47                                     | 56                    | 57,2                      | 0,3                   | 0,15                  | -                         |

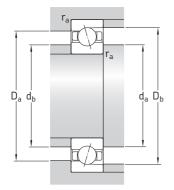
## Cuscinetti obliqui a sfere Super-precision serie 718 (SEA) d 50 – 95 mm

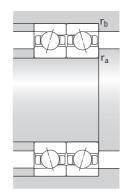


| Dimen | sioni d'ingo         | ombro            |                              | enti di carico<br>statico    | Carico<br>limite<br>di fatica    | In caso di                           | ammissibili<br>lubrificazione co<br>olio-aria | <b>Massa</b><br>n                | <b>Denominazioni</b><br>SKF                                    | SNFA                                                         |
|-------|----------------------|------------------|------------------------------|------------------------------|----------------------------------|--------------------------------------|-----------------------------------------------|----------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|
| d     | D                    | В                | С                            | $C_0$                        | P <sub>u</sub>                   | grasso                               | uliu-ai ia                                    |                                  |                                                                |                                                              |
| mm    |                      |                  | kN                           |                              | kN                               | giri/min                             |                                               | kg                               | -                                                              |                                                              |
| 50    | 65<br>65<br>65       | 7<br>7<br>7<br>7 | 7,41<br>6,89<br>7,41<br>6,89 | 7,8<br>7,35<br>7,8<br>7,35   | 0,335<br>0,315<br>0,335<br>0,315 | 20 000<br>18 000<br>24 000<br>22 000 | 30 000<br>28 000<br>36 000<br>34 000          | 0,051<br>0,051<br>0,046<br>0,046 | 71810 CD/P4<br>71810 ACD/P4<br>71810 CD/HCP4<br>71810 ACD/HCP4 | SEA50 7CE1<br>SEA50 7CE3<br>SEA50 /NS 7CE1<br>SEA50 /NS 7CE3 |
| 55    | 72<br>72<br>72<br>72 | 9<br>9<br>9      | 10,1<br>9,56<br>10,1<br>9,56 | 10,8<br>10,2<br>10,8<br>10,2 | 0,455<br>0,43<br>0,455<br>0,43   | 18 000<br>16 000<br>22 000<br>19 000 | 28 000<br>24 000<br>32 000<br>30 000          | 0,081<br>0,081<br>0,073<br>0,073 | 71811 CD/P4<br>71811 ACD/P4<br>71811 CD/HCP4<br>71811 ACD/HCP4 | SEA55 7CE1<br>SEA55 7CE3<br>SEA55 /NS 7CE1<br>SEA55 /NS 7CE3 |
| 60    | 78                   | 10               | 13,5                         | 14,3                         | 0,6                              | 16 000                               | 24 000                                        | 0,1                              | 71812 CD/P4                                                    | SEA60 7CE1                                                   |
|       | 78                   | 10               | 12,7                         | 13,4                         | 0,57                             | 15 000                               | 22 000                                        | 0,1                              | 71812 ACD/P4                                                   | SEA60 7CE3                                                   |
|       | 78                   | 10               | 13,5                         | 14,3                         | 0,6                              | 19 000                               | 30 000                                        | 0,088                            | 71812 CD/HCP4                                                  | SEA60 /NS 7CE1                                               |
|       | 78                   | 10               | 12,7                         | 13,4                         | 0,57                             | 18 000                               | 26 000                                        | 0,088                            | 71812 ACD/HCP4                                                 | SEA60 /NS 7CE3                                               |
| 65    | 85                   | 10               | 13,5                         | 14,6                         | 0,63                             | 15 000                               | 22 000                                        | 0,126                            | 71813 CD/P4                                                    | SEA65 7CE1                                                   |
|       | 85                   | 10               | 12,7                         | 14                           | 0,585                            | 13 000                               | 20 000                                        | 0,126                            | 71813 ACD/P4                                                   | SEA65 7CE3                                                   |
|       | 85                   | 10               | 13,5                         | 14,6                         | 0,63                             | 18 000                               | 28 000                                        | 0,114                            | 71813 CD/HCP4                                                  | SEA65 /NS 7CE1                                               |
|       | 85                   | 10               | 12,7                         | 14                           | 0,585                            | 16 000                               | 24 000                                        | 0,114                            | 71813 ACD/HCP4                                                 | SEA65 /NS 7CE3                                               |
| 70    | 90                   | 10               | 13,8                         | 16                           | 0,67                             | 14 000                               | 22 000                                        | 0,134                            | 71814 CD/P4                                                    | SEA70 7CE1                                                   |
|       | 90                   | 10               | 13                           | 15                           | 0,64                             | 13 000                               | 19 000                                        | 0,134                            | 71814 ACD/P4                                                   | SEA70 7CE3                                                   |
|       | 90                   | 10               | 13,8                         | 16                           | 0,67                             | 17 000                               | 26 000                                        | 0,121                            | 71814 CD/HCP4                                                  | SEA70 /NS 7CE1                                               |
|       | 90                   | 10               | 13                           | 15                           | 0,64                             | 15 000                               | 24 000                                        | 0,121                            | 71814 ACD/HCP4                                                 | SEA70 /NS 7CE3                                               |
| 75    | 95                   | 10               | 14,3                         | 17                           | 0,72                             | 13 000                               | 20 000                                        | 0,142                            | 71815 CD/P4                                                    | SEA75 7CE1                                                   |
|       | 95                   | 10               | 13,3                         | 16                           | 0,68                             | 12 000                               | 18 000                                        | 0,142                            | 71815 ACD/P4                                                   | SEA75 7CE3                                                   |
|       | 95                   | 10               | 14,3                         | 17                           | 0,72                             | 16 000                               | 24 000                                        | 0,128                            | 71815 CD/HCP4                                                  | SEA75 /NS 7CE1                                               |
|       | 95                   | 10               | 13,3                         | 16                           | 0,68                             | 14 000                               | 22 000                                        | 0,128                            | 71815 ACD/HCP4                                                 | SEA75 /NS 7CE3                                               |
| 80    | 100                  | 10               | 14,6                         | 18,3                         | 0,765                            | 12 000                               | 19 000                                        | 0,151                            | 71816 CD/P4                                                    | SEA80 7CE1                                                   |
|       | 100                  | 10               | 13,8                         | 17                           | 0,72                             | 11 000                               | 17 000                                        | 0,151                            | 71816 ACD/P4                                                   | SEA80 7CE3                                                   |
|       | 100                  | 10               | 14,6                         | 18,3                         | 0,765                            | 15 000                               | 22 000                                        | 0,136                            | 71816 CD/HCP4                                                  | SEA80 /NS 7CE1                                               |
|       | 100                  | 10               | 13,8                         | 17                           | 0,72                             | 13 000                               | 20 000                                        | 0,136                            | 71816 ACD/HCP4                                                 | SEA80 /NS 7CE3                                               |
| 85    | 110                  | 13               | 21,6                         | 25,5                         | 1,08                             | 11 000                               | 17 000                                        | 0,266                            | 71817 CD/P4                                                    | SEA85 7CE1                                                   |
|       | 110                  | 13               | 20,3                         | 24                           | 1,02                             | 10 000                               | 16 000                                        | 0,266                            | 71817 ACD/P4                                                   | SEA85 7CE3                                                   |
|       | 110                  | 13               | 21,6                         | 25,5                         | 1,08                             | 14 000                               | 20 000                                        | 0,239                            | 71817 CD/HCP4                                                  | SEA85 /NS 7CE1                                               |
|       | 110                  | 13               | 20,3                         | 24                           | 1,02                             | 12 000                               | 19 000                                        | 0,239                            | 71817 ACD/HCP4                                                 | SEA85 /NS 7CE3                                               |
| 90    | 115                  | 13               | 21,6                         | 26,5                         | 1,1                              | 11 000                               | 17 000                                        | 0,279                            | 71818 CD/P4                                                    | SEA90 7CE1                                                   |
|       | 115                  | 13               | 20,3                         | 25                           | 1,04                             | 10 000                               | 15 000                                        | 0,279                            | 71818 ACD/P4                                                   | SEA90 7CE3                                                   |
|       | 115                  | 13               | 21,6                         | 26,5                         | 1,1                              | 13 000                               | 20 000                                        | 0,251                            | 71818 CD/HCP4                                                  | SEA90 /NS 7CE1                                               |
|       | 115                  | 13               | 20,3                         | 25                           | 1,04                             | 12 000                               | 18 000                                        | 0,251                            | 71818 ACD/HCP4                                                 | SEA90 /NS 7CE3                                               |
| 95    | 120                  | 13               | 22,1                         | 27,5                         | 1,12                             | 10 000                               | 16 000                                        | 0,292                            | 71819 CD/P4                                                    | SEA95 7CE1                                                   |
|       | 120                  | 13               | 20,8                         | 25,5                         | 1,06                             | 9 500                                | 14 000                                        | 0,292                            | 71819 ACD/P4                                                   | SEA95 7CE3                                                   |
|       | 120                  | 13               | 22,1                         | 27,5                         | 1,12                             | 12 000                               | 19 000                                        | 0,263                            | 71819 CD/HCP4                                                  | SEA95 /NS 7CE1                                               |
|       | 120                  | 13               | 20,8                         | 25,5                         | 1,06                             | 11 000                               | 17 000                                        | 0,263                            | 71819 ACD/HCP4                                                 | SEA95 /NS 7CE3                                               |







| Dimen | sioni                            |                                  |                          |                              |                              |                                        | sioni dello<br>nente che         |                              |                          |                              | Fattore<br>per il calcolo |  |
|-------|----------------------------------|----------------------------------|--------------------------|------------------------------|------------------------------|----------------------------------------|----------------------------------|------------------------------|--------------------------|------------------------------|---------------------------|--|
| d     | d <sub>1</sub>                   | D <sub>1</sub>                   | r <sub>1,2</sub><br>min  | r <sub>3,4</sub><br>min      | a                            | d <sub>a</sub> , d <sub>b</sub><br>min | D <sub>a</sub><br>max            | D <sub>b</sub><br>max        | r <sub>a</sub><br>max    | r <sub>b</sub><br>max        | $f_0$                     |  |
| mm    |                                  |                                  |                          |                              |                              | mm                                     |                                  |                              |                          |                              | -                         |  |
| 50    | 55,1<br>55,1<br>55,1<br>55,1     | 60<br>60<br>60                   | 0,3<br>0,3<br>0,3<br>0,3 | 0,15<br>0,15<br>0,15<br>0,15 | 11,2<br>16,9<br>11,2<br>16,9 | 52<br>52<br>52<br>52                   | 63<br>63<br>63                   | 64,2<br>64,2<br>64,2<br>64,2 | 0,3<br>0,3<br>0,3<br>0,3 | 0,15<br>0,15<br>0,15<br>0,15 | 17<br>-<br>17<br>-        |  |
| 55    | 60,7<br>60,7<br>60,7<br>60,7     | 66,5<br>66,5<br>66,5<br>66,5     | 0,3<br>0,3<br>0,3<br>0,3 | 0,15<br>0,15<br>0,15<br>0,15 | 13<br>19,3<br>13<br>19,3     | 57<br>57<br>57<br>57                   | 70<br>70<br>70<br>70             | 71,2<br>71,2<br>71,2<br>71,2 | 0,3<br>0,3<br>0,3<br>0,3 | 0,15<br>0,15<br>0,15<br>0,15 | 17<br>-<br>17<br>-        |  |
| 60    | 65,7<br>65,7<br>65,7<br>65,7     | 72,5<br>72,5<br>72,5<br>72,5     | 0,3<br>0,3<br>0,3<br>0,3 | 0,15<br>0,15<br>0,15<br>0,15 | 14,3<br>21,1<br>14,3<br>21,1 | 62<br>62<br>62<br>62                   | 76<br>76<br>76<br>76             | 77,2<br>77,2<br>77,2<br>77,2 | 0,3<br>0,3<br>0,3<br>0,3 | 0,15<br>0,15<br>0,15<br>0,15 | 17<br>-<br>17<br>-        |  |
| 65    | 71,7<br>71,7<br>71,7<br>71,7     | 78,5<br>78,5<br>78,5<br>78,5     | 0,6<br>0,6<br>0,6<br>0,6 | 0,3<br>0,3<br>0,3<br>0,3     | 15,1<br>22,5<br>15,1<br>22,5 | 68,2<br>68,2<br>68,2<br>68,2           | 81,8<br>81,8<br>81,8<br>81,8     | 83<br>83<br>83<br>83         | 0,6<br>0,6<br>0,6<br>0,6 | 0,3<br>0,3<br>0,3<br>0,3     | 17<br>-<br>17<br>-        |  |
| 70    | 76,7<br>76,7<br>76,7<br>76,7     | 83,5<br>83,5<br>83,5<br>83,5     | 0,6<br>0,6<br>0,6<br>0,6 | 0,3<br>0,3<br>0,3<br>0,3     | 15,7<br>23,7<br>15,7<br>23,7 | 73,2<br>73,2<br>73,2<br>73,2           | 86,8<br>86,8<br>86,8<br>86,8     | 88<br>88<br>88               | 0,6<br>0,6<br>0,6<br>0,6 | 0,3<br>0,3<br>0,3<br>0,3     | 17<br>-<br>17<br>-        |  |
| 75    | 81,7<br>81,7<br>81,7<br>81,7     | 88,5<br>88,5<br>88,5<br>88,5     | 0,6<br>0,6<br>0,6<br>0,6 | 0,3<br>0,3<br>0,3<br>0,3     | 16,4<br>24,9<br>16,4<br>24,9 | 78,2<br>78,2<br>78,2<br>78,2           | 91,8<br>91,8<br>91,8<br>91,8     | 93<br>93<br>93<br>93         | 0,6<br>0,6<br>0,6<br>0,6 | 0,3<br>0,3<br>0,3<br>0,3     | 17<br>-<br>17<br>-        |  |
| 80    | 86,7<br>86,7<br>86,7<br>86,7     | 93,5<br>93,5<br>93,5<br>93,5     | 0,6<br>0,6<br>0,6<br>0,6 | 0,3<br>0,3<br>0,3<br>0,3     | 17,1<br>26<br>17,1<br>26     | 83,2<br>83,2<br>83,2<br>83,2           | 96,8<br>96,8<br>96,8<br>96,8     | 98<br>98<br>98<br>98         | 0,6<br>0,6<br>0,6<br>0,6 | 0,3<br>0,3<br>0,3<br>0,3     | 17<br>-<br>17<br>-        |  |
| 85    | 93,2<br>93,2<br>93,2<br>93,2     | 102,1<br>102,1<br>102,1<br>102,1 | 1<br>1<br>1              | 0,3<br>0,3<br>0,3<br>0,3     | 19,6<br>29,3<br>19,6<br>29,3 | 89,6<br>89,6<br>89,6<br>89,6           | 105,4<br>105,4<br>105,4<br>105,4 | 108<br>108<br>108<br>108     | 1<br>1<br>1              | 0,3<br>0,3<br>0,3<br>0,3     | 17<br>-<br>17<br>-        |  |
| 90    | 98,2<br>98,2<br>98,2<br>98,2     | 107,1<br>107,1<br>107,1<br>107,1 | 1<br>1<br>1              | 0,3<br>0,3<br>0,3<br>0,3     | 20,3<br>30,5<br>20,3<br>30,5 | 94,6<br>94,6<br>94,6<br>94,6           | 110,4<br>110,4<br>110,4<br>110,4 | 113<br>113<br>113<br>113     | 1<br>1<br>1              | 0,3<br>0,3<br>0,3<br>0,3     | 17<br>-<br>17<br>-        |  |
| 95    | 103,2<br>103,2<br>103,2<br>103,2 | 112,1<br>112,1<br>112,1<br>112,1 | 1<br>1<br>1              | 0,3<br>0,3<br>0,3<br>0,3     | 20,9<br>31,6<br>20,9<br>31,6 | 99,6<br>99,6<br>99,6<br>99,6           | 115,4<br>115,4<br>115,4<br>115,4 | 118<br>118<br>118<br>118     | 1<br>1<br>1              | 0,3<br>0,3<br>0,3<br>0,3     | 17<br>-<br>17<br>-        |  |


**SKF** 

## Cuscinetti obliqui a sfere Super-precision serie 718 (SEA) d 100-160 mm



| Dimensioni d'ingombro |     |    | <b>enti di carico</b><br>o statico | Carico<br>limite<br>di fatica |                | ammissibili<br>i lubrificazione co<br>olio-aria | <b>Massa</b><br>n | <b>Denominazioni</b><br>SKF | SNFA           |                 |  |
|-----------------------|-----|----|------------------------------------|-------------------------------|----------------|-------------------------------------------------|-------------------|-----------------------------|----------------|-----------------|--|
| d                     | D   | В  | С                                  | $C_0$                         | P <sub>u</sub> | yrassu                                          | Ulio-al la        |                             |                |                 |  |
| mm                    |     |    | kN                                 |                               | kN             | giri/min                                        |                   | kg                          | -              |                 |  |
| 100                   | 125 | 13 | 22,5                               | 29                            | 1,16           | 9 000                                           | 14 000            | 0,31                        | 71820 CD/P4    | SEA100 7CE1     |  |
|                       | 125 | 13 | 21,2                               | 27,5                          | 1,1            | 8 500                                           | 13 000            | 0,31                        | 71820 ACD/P4   | SEA100 7CE3     |  |
|                       | 125 | 13 | 22,5                               | 29                            | 1,16           | 11 000                                          | 17 000            | 0,279                       | 71820 CD/HCP4  | SEA100 /NS 7CE3 |  |
|                       | 125 | 13 | 21,2                               | 27,5                          | 1,1            | 10 000                                          | 15 000            | 0,279                       | 71820 ACD/HCP4 | SEA100 /NS 7CE3 |  |
| 105                   | 130 | 13 | 22,9                               | 30                            | 1,18           | 9 000                                           | 14 000            | 0,32                        | 71821 CD/P4    | SEA105 7CE1     |  |
|                       | 130 | 13 | 21,6                               | 28,5                          | 1,1            | 8 000                                           | 12 000            | 0,32                        | 71821 ACD/P4   | SEA105 7CE3     |  |
|                       | 130 | 13 | 22,9                               | 30                            | 1,18           | 11 000                                          | 16 000            | 0,289                       | 71821 CD/HCP4  | SEA105 /NS 7CE3 |  |
|                       | 130 | 13 | 21,6                               | 28,5                          | 1,1            | 9 500                                           | 15 000            | 0,289                       | 71821 ACD/HCP4 | SEA105 /NS 7CE3 |  |
| 110                   | 140 | 16 | 31,9                               | 40,5                          | 1,53           | 8 000                                           | 13 000            | 0,505                       | 71822 CD/P4    | SEA110 7CE1     |  |
|                       | 140 | 16 | 30,2                               | 38                            | 1,46           | 7 500                                           | 12 000            | 0,505                       | 71822 ACD/P4   | SEA110 7CE3     |  |
|                       | 140 | 16 | 31,9                               | 40,5                          | 1,53           | 10 000                                          | 15 000            | 0,453                       | 71822 CD/HCP4  | SEA110 /NS 7CE3 |  |
|                       | 140 | 16 | 30,2                               | 38                            | 1,46           | 9 000                                           | 14 000            | 0,453                       | 71822 ACD/HCP4 | SEA110 /NS 7CE3 |  |
| 120                   | 150 | 16 | 33,2                               | 45                            | 1,63           | 7 500                                           | 12 000            | 0,55                        | 71824 CD/P4    | SEA120 7CE1     |  |
|                       | 150 | 16 | 31,2                               | 42,5                          | 1,53           | 6 700                                           | 11 000            | 0,55                        | 71824 ACD/P4   | SEA120 7CE3     |  |
|                       | 150 | 16 | 33,2                               | 45                            | 1,63           | 9 000                                           | 14 000            | 0,493                       | 71824 CD/HCP4  | SEA120 /NS 7CE2 |  |
|                       | 150 | 16 | 31,2                               | 42,5                          | 1,53           | 8 000                                           | 13 000            | 0,493                       | 71824 ACD/HCP4 | SEA120 /NS 7CE3 |  |
| 130                   | 165 | 18 | 39                                 | 53                            | 1,86           | 7 000                                           | 11 000            | 0,77                        | 71826 CD/P4    | SEA130 7CE1     |  |
|                       | 165 | 18 | 36,4                               | 50                            | 1,76           | 6 300                                           | 9 500             | 0,77                        | 71826 ACD/P4   | SEA130 7CE3     |  |
|                       | 165 | 18 | 39                                 | 53                            | 1,86           | 8 500                                           | 13 000            | 0,696                       | 71826 CD/HCP4  | SEA130 /NS 7CE3 |  |
|                       | 165 | 18 | 36,4                               | 50                            | 1,76           | 7 500                                           | 12 000            | 0,696                       | 71826 ACD/HCP4 | SEA130 /NS 7CE3 |  |
| 140                   | 175 | 18 | 44,9                               | 62                            | 2,12           | 6 300                                           | 10 000            | 0,8                         | 71828 CD/P4    | SEA140 7CE1     |  |
|                       | 175 | 18 | 42,3                               | 58,5                          | 2              | 6 000                                           | 9 000             | 0,8                         | 71828 ACD/P4   | SEA140 7CE3     |  |
|                       | 175 | 18 | 44,9                               | 62                            | 2,12           | 8 000                                           | 12 000            | 0,705                       | 71828 CD/HCP4  | SEA140 /NS 7CE3 |  |
|                       | 175 | 18 | 42,3                               | 58,5                          | 2              | 7 000                                           | 11 000            | 0,705                       | 71828 ACD/HCP4 | SEA140 /NS 7CE3 |  |
| 150                   | 190 | 20 | 52                                 | 72                            | 2,36           | 6 000                                           | 9 000             | 1,1                         | 71830 CD/P4    | SEA150 7CE1     |  |
|                       | 190 | 20 | 48,8                               | 68                            | 2,2            | 5 300                                           | 8 500             | 1,1                         | 71830 ACD/P4   | SEA150 7CE3     |  |
|                       | 190 | 20 | 52                                 | 72                            | 2,36           | 7 000                                           | 11 000            | 0,982                       | 71830 CD/HCP4  | SEA150 /NS 7CE3 |  |
|                       | 190 | 20 | 48,8                               | 68                            | 2,2            | 6 300                                           | 10 000            | 0,982                       | 71830 ACD/HCP4 | SEA150 /NS 7CE3 |  |
| 160                   | 200 | 20 | 54                                 | 78                            | 2,5            | 5 600                                           | 8 500             | 1,233                       | 71832 CD/P4    | SEA160 7CE1     |  |
|                       | 200 | 20 | 50,7                               | 75                            | 2,36           | 5 000                                           | 8 000             | 1,233                       | 71832 ACD/P4   | SEA160 7CE3     |  |
|                       | 200 | 20 | 54                                 | 78                            | 2,5            | 6 700                                           | 10 000            | 1,105                       | 71832 CD/HCP4  | SEA160 /NS 7CE3 |  |
|                       | 200 | 20 | 50,7                               | 75                            | 2,36           | 6 000                                           | 9 500             | 1,105                       | 71832 ACD/HCP4 | SEA160 /NS 7CE3 |  |





| Dimen | sioni                            |                                      |                          | Dimensioni dello spalleggiamento e del componente che accoglie il cuscinetto |                              |                                        |                                  |                                  | Fattore<br>per il calcolo |                          |                    |
|-------|----------------------------------|--------------------------------------|--------------------------|------------------------------------------------------------------------------|------------------------------|----------------------------------------|----------------------------------|----------------------------------|---------------------------|--------------------------|--------------------|
| d     | d <sub>1</sub> ~                 | D <sub>1</sub> ~                     | r <sub>1,2</sub><br>min  | r <sub>3,4</sub><br>min                                                      | a                            | d <sub>a</sub> , d <sub>b</sub><br>min | D <sub>a</sub><br>max            | D <sub>b</sub><br>max            | r <sub>a</sub><br>max     | r <sub>b</sub><br>max    | $f_0$              |
| mm    |                                  |                                      |                          |                                                                              |                              | mm                                     |                                  |                                  |                           |                          | _                  |
| 100   | 108,2<br>108,2<br>108,2<br>108,2 | 117<br>117<br>117<br>117             | 1<br>1<br>1              | 0,3<br>0,3<br>0,3<br>0,3                                                     | 21,6<br>32,8<br>21,6<br>32,8 | 104,6<br>104,6<br>104,6<br>104,6       | 120,4<br>120,4<br>120,4<br>120,4 | 123<br>123<br>123<br>123         | 1<br>1<br>1               | 0,3<br>0,3<br>0,3<br>0,3 | 17<br>-<br>17<br>- |
| 105   | 113,2<br>113,2<br>113,2<br>113,2 | 122<br>122<br>122<br>122             | 1<br>1<br>1              | 0,3<br>0,3<br>0,3<br>0,3                                                     | 22,3<br>34<br>22,3<br>34     | 109,6<br>109,6<br>109,6<br>109,6       | 125,4<br>125,4<br>125,4<br>125,4 | 128<br>128<br>128<br>128         | 1<br>1<br>1               | 0,3<br>0,3<br>0,3<br>0,3 | 17<br>-<br>17<br>- |
| 110   | 119,8<br>119,8<br>119,8<br>119,8 | 130,6<br>130,6<br>130,6<br>130,6     | 1<br>1<br>1              | 0,3<br>0,3<br>0,3<br>0,3                                                     | 24,8<br>37,2<br>24,8<br>37,2 | 114,6<br>114,6<br>114,6<br>114,6       | 135,4<br>135,4<br>135,4<br>135,4 | 138<br>138<br>138<br>138         | 1<br>1<br>1               | 0,3<br>0,3<br>0,3<br>0,3 | 17<br>-<br>17<br>- |
| 120   | 129,8<br>129,8<br>129,8<br>129,8 | 140,6<br>140,6<br>140,6<br>140,6     | 1<br>1<br>1              | 0,3<br>0,3<br>0,3<br>0,3                                                     | 26,1<br>39,5<br>26,1<br>39,5 | 124,6<br>124,6<br>124,6<br>124,6       | 145,4<br>145,4<br>145,4<br>145,4 | 148<br>148<br>148<br>148         | 1<br>1<br>1               | 0,3<br>0,3<br>0,3<br>0,3 | 17<br>-<br>17<br>- |
| 130   | 141,8<br>141,8<br>141,8<br>141,8 | 153,21<br>153,21<br>153,21<br>153,21 | 1,1<br>1,1<br>1,1<br>1,1 | 0,6<br>0,6<br>0,6<br>0,6                                                     | 28,8<br>43,5<br>28,8<br>43,5 | 136<br>136<br>136<br>136               | 159<br>159<br>159<br>159         | 161,8<br>161,8<br>161,8<br>161,8 | 1,1<br>1,1<br>1,1<br>1,1  | 0,6<br>0,6<br>0,6<br>0,6 | 17<br>-<br>17<br>- |
| 140   | 151,3<br>151,3<br>151,3<br>151,3 | 163,71<br>163,71<br>163,71<br>163,71 | 1,1<br>1,1<br>1,1<br>1,1 | 0,6<br>0,6<br>0,6<br>0,6                                                     | 30,2<br>45,8<br>30,2<br>45,8 | 146<br>146<br>146<br>146               | 169<br>169<br>169<br>169         | 171,8<br>171,8<br>171,8<br>171,8 | 1,1<br>1,1<br>1,1<br>1,1  | 0,6<br>0,6<br>0,6<br>0,6 | 17<br>-<br>17<br>- |
| 150   | 163,4<br>163,4<br>163,4<br>163,4 | 176,7<br>176,7<br>176,7<br>176,7     | 1,1<br>1,1<br>1,1<br>1,1 | 0,6<br>0,6<br>0,6<br>0,6                                                     | 32,8<br>49,7<br>32,8<br>49,7 | 156<br>156<br>156<br>156               | 184<br>184<br>184<br>184         | 186,8<br>186,8<br>186,8<br>186,8 | 1,1<br>1,1<br>1,1<br>1,1  | 0,6<br>0,6<br>0,6<br>0,6 | 17<br>-<br>17<br>- |
| 160   | 173,4<br>173,4<br>173,4<br>173,4 | 186,7<br>186,7<br>186,7<br>186,7     | 1,1<br>1,1<br>1,1<br>1,1 | 0,6<br>0,6<br>0,6<br>0,6                                                     | 34,2<br>52,1<br>34,2<br>52,1 | 166<br>166<br>166<br>166               | 194<br>194<br>194<br>194         | 196,8<br>196,8<br>196,8<br>196,8 | 1,1<br>1,1<br>1,1<br>1,1  | 0,6<br>0,6<br>0,6<br>0,6 | 17<br>-<br>17<br>- |

# Raggiungere il massimo livello in ambito di cuscinetti di precisione

La SKF ha sviluppato, e continua ad ampliare, una gamma di cuscinetti Super-precision di nuova generazione tecnologicamente più avanzati. I cuscinetti del nuovo assortimento garantiscono una maggiore precisione e un prolungamento della durata di esercizio, rispetto ai design precedenti.

## Cuscinetti obliqui a sfere Super-precision

## Cuscinetti delle serie 719 .. D (SEB) e 70 .. D (EX)

Per le applicazioni in cui è richiesta anche un'elevata capacità di carico, la SKF offre i cuscinetti delle serie 719 .. D (SEB) e 70 .. D (EX) a elevata capacità. Entrambe queste serie di cuscinetti Super-precision di nuova concezione offrono un'eccellente capacità di sopportare carichi pesanti nelle applicazioni in cui lo spazio radiale è limitato, il che le rende la scelta ideale per le applicazioni più gravose. I cuscinetti aperti della serie 719 .. D (SEB) sono idonei per diametri albero da 10 a 360 mm e quelli schermati per diametri da 10 a 150 mm.

I cuscinetti aperti della serie 70 .. D (*EX*) sono idonei per diametri albero da 6 a 240 mm e quelli schermati per diametri da 10 a 150 mm.

## Cuscinetti delle serie 72 .. D (*E 200*)

I cuscinetti a elevata capacità di carico della serie 72 .. D (*E 200*) offrono soluzioni per le problematiche connesse a molte disposizioni di cuscinetti. Tra le loro caratteristiche principali, la capacità di garantire una maggiore rigidezza e quella di sopportare carichi pesanti a velocità relativamente elevate rendono questi cuscinetti vantaggiosi per numerose tipologie di applicazione. L'assortimento ampliato dei cuscinetti di questa serie è ora idoneo per diametri albero da 7 a 140 mm. Inoltre, su richiesta è disponibile una variante schermata ed esente da rilubrificazione.



## Cuscinetti delle serie S719 .. B (HB .. /S) e S70 .. B (HX .. /S)

I cuscinetti schermati per alta velocità delle serie S719 .. B (HB .. /S) e S70 .. B (HX .. /S) sono di fatto in grado di eliminare il problema dei cedimenti prematuri dei cuscinetti causati dalla contaminazione. L'assortimento standard è idoneo per diametri albero da 30 a 120 mm. Questi cuscinetti, esenti da rilubrificazione, sono ideali per i macchinari per il taglio dei metalli e la lavorazione del legno. Sono disponibili anche nella versione aperta.



## Cuscinetti delle serie 719 .. E (VEB) e 70 .. E (VEX)

Rispetto ai cuscinetti per alta velocità con design B, quelli con design E consentono velocità anche maggiori e possono sopportare carichi più pesanti. Tale vantaggiosa combinazione rende questi cuscinetti una soluzione eccellente per le applicazioni gravose.

I cuscinetti aperti della serie 719 .. E (*VEB*) sono idonei per diametri albero da 8 a 120 mm e quelli schermati per diametri da 20 a 120 mm.

I cuscinetti aperti della serie 70 .. E (*VEX*) sono idonei per diametri albero da 6 a 120 mm e quelli schermati per diametri da 10 a 120 mm.



## Cuscinetti in acciaio NitroMax

Nelle applicazioni estremamente gravose, come quelle dei centri di lavorazione e delle fresatrici ad alta velocità, i cuscinetti devono spesso operare in presenza di condizioni di esercizio critiche come velocità elevate, scarsa lubrificazione e ambienti contaminati e corrosivi. Per garantire una maggiore durata operativa e ridurre i costi causati dai tempi di fermo non programmati, la SKF ha sviluppato un acciaio di altissima qualità a elevato contenuto di azoto.

I cuscinetti obliqui a sfere Super-precision della SKF della gamma realizzata in acciaio NitroMax sono dotati, di serie, di elementi volventi in ceramica (nitruro di silicio di qualità per cuscinetti).

# Cuscinetti a rulli cilindrici Super-precision

La SKF produce cuscinetti Super-precision a una e due corone di rulli cilindrici. Le caratteristiche distintive di questi tipi sono altezza sezionale ridotta, elevate capacità di carico, rigidezza e capacità di operare ad alta velocità. Per queste caratteristiche sono particolarmente indicati per i mandrini delle macchine utensili, in cui la disposizione di cuscinetti deve sopportare pesanti carichi radiali, operare ad alta velocità e, al contempo, garantire un elevato grado di rigidezza.

I cuscinetti a una corona di rulli cilindrici sono prodotti nella serie N 10, come cuscinetti con design base e design per alta velocità. I tipi a singola corona per alta velocità della serie N 10 sono disponibili solo con foro conico e per diametri albero da 40 a 80 mm. Rispetto al precedente design, possono sopportare velocità più elevate fino al 30% nelle applicazioni lubrificate a grasso, e fino al 15% in caso di lubrificazione a olio-aria.

I cuscinetti a due corone di rulli cilindrici, nella versione standard, vengono prodotti nei design NN e NNU.

## Cuscinetti assiali obliqui a sfere a doppio effetto Super-precision

I cuscinetti obliqui a sfere a doppio effetto, come si comprende dalla loro stessa denominazione, sono stati sviluppati dalla SKF per vincolare assialmente i mandrini delle macchine utensili in ambo le direzioni.

Il nuovo design ottimizzato dei cuscinetti Super-precision della serie BTW prevede un gruppo di due cuscinetti assiali obliqui a una corona di sfere in disposizione a "O". Questa configurazione consente ai cuscinetti di sopportare i carichi assiali in ambo le direzioni e garantire, al contempo, un elevato grado di rigidezza di sistema. Questi tipi possono sopportare velocità più elevate rispetto a quelli della precedente serie 2344(00). Questi cuscinetti sono disponibili per diametri albero nella gamma dimensionale da 35 a 200 mm.

La serie BTM per alta velocità di nuova concezione è idonea per velocità più elevate dal 6% al 12%, in base alle dimensioni; la riduzione al minimo della produzione di calore, anche ad alta velocità, consente una maggiore capacità di carico e permette di mantenere un elevato grado di rigidezza di sistema. La gamma di cuscinetti della serie BTM è stata ampliata con articoli idonei per diametri albero da 60 a 180 mm.



# Cuscinetti assiali obliqui a sfere Super-precision per viti a ricircolo di sfere

I cuscinetti assiali obliqui a sfere a semplice effetto delle serie BSA e BSD (*BS*) sono disponibili per diametri albero da 12 a 75 mm. Questi tipi si distinguono per l'eccezionale rigidezza assiale e l'elevata capacità di carico assiale.

I cuscinetti assiali obliqui a sfere a doppio effetto della serie BEAS sono stati concepiti per le applicazioni delle macchine utensili in cui lo spazio è limitato e sono richieste procedure di montaggio semplici. Questi tipi sono disponibili per diametri albero da 8 a 30 mm. I cuscinetti della serie BEAM, idonei per diametri albero da 12 a 60 mm, possono essere imbullonati a un componente correlato.

Le unità cartuccia costituiscono un'altra soluzione in grado di garantire un montaggio rapido e semplice. Le unità della serie FBSA (*BSDU* e *BSQU*) comprendono cuscinetti assiali obliqui a sfere a semplice effetto e sono idonee per diametri albero da 20 a 60 mm.

# Cuscinetti a rulli cilindrici assiali-radiali Super-precision

I cuscinetti a rulli cilindrici assiali-radiali della SKF sono idonei per disposizioni su cui agiscono simultaneamente carichi (radiali e assiali) e momentanei.

Il design interno, combinato con processi di produzione a tolleranza ristretta, consente di ottenere per questi tipi una maggiore precisione rispetto alla P4.

Questi cuscinetti si utilizzano di norma per supportare le tavole rotanti, i dischi divisori e le teste di fresatura.





# SKF – the knowledge engineering company

Dal 1907 ad oggi. La SKF è nata da una semplice ma ingegnosa soluzione a un problema di disallineamento in una fabbrica tessile, e, a partire da solo quindici dipendenti, è cresciuta fino di-





ventare oggi leader mondiale del settore. Nel corso degli anni, usando la nostra competenza in materia di cuscinetti come punto di partenza, abbiamo creato il nostro knowhow nel campo delle guarnizioni di tenuta, della meccatronica, dei servizi e dei sistemi di lubrificazione. La nostra rete conta 46.000 dipendenti, 15.000 partner di distribuzione, sedi in oltre 130 paesi e un numero sempre crescente di SKF Solution Factory in tutto il mondo.

#### Ricerca e sviluppo

La nostra esperienza pratica in oltre 40 settori ha una solida base: la conoscenza delle condizioni reali da parte dei nostri dipendenti. Inoltre, i nostri esperti e i nostri partner universitari svolgono ricerca teorica avanzata e sviluppo in aree che comprendono la tribologia, il monitoraggio delle condizioni, la gestione degli impianti e la teoria della durata dei cuscinetti. Il nostro impegno continuo in ricerca e sviluppo ci consente di far sì che i nostri clienti siano sempre all'avanguardia nei rispettivi settori di competenza.

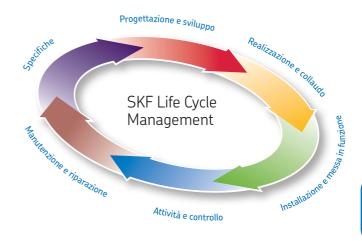
#### Vincere le sfide più impegnative

La nostra rete di conoscenza ed esperienza, combinata con le nostre tecnologie, ci consente di creare soluzioni innovative per affrontare le sfide più impegnative. Lavoriamo a stretto contatto con i clienti per tutto il ciclo di vita della risorsa, aiutandoli a sviluppare la propria attività in maniera redditizia e responsabile.

#### Lavorare per un futuro sostenibile

A partire dal 2005, la SKF si è impegnata a ridurre l'impatto ambientale negativo delle proprie attività e di quelle dei propri fornitori. Il continuo sviluppo tecnologico ha dato vita alla gamma di prodotti e servizi SKF BeyondZero che migliora l'efficienza e riduce le perdite di energia, consentendo lo sviluppo di nuove tecnologie di sfruttamento dell'energia eolica, solare e del moto ondoso e delle maree. Questo approccio combinato aiuta a ridurre sia l'impatto ambientale dei nostri stabilimenti sia quello dei nostri clienti.

Le SKF Solution Factory mettono localmente a disposizione la conoscenza e la competenza globale della SKF, per fornire ai nostri clienti soluzioni e servizi esclusivi.




Lavorando con i sistemi IT e logistici e gli esperti di applicazione della SKF, i Concessionari Autorizzati forniscono ai clienti di tutto il mondo una preziosa combinazione di prodotto e conoscenza applicativa.



## La nostra conoscenza, il vostro successo

SKF Life Cycle Management riunisce le nostre piattaforme tecnologiche e i nostri servizi avanzati per l'applicazione a ciascuna fase del ciclo di vita degli asset, per garantire maggiore efficacia, sostenibilità e redditività.



#### Sempre al vostro fianco

Vogliamo aiutare i nostri clienti a migliorare la produttività, minimizzare la manutenzione, raggiungere una maggiore efficienza energetica e delle risorse e ottimizzare i progetti per ottenere una lunga durata e affidabilità.

#### Soluzioni innovative

Che l'applicazione sia lineare, rotante o una combinazione delle due, gli ingegneri della SKF vi possono aiutare a migliorare le prestazioni dei macchinari, prendendo in considerazione l'intera applicazione e ciascuna fase del ciclo di vita degli asset. Questo approccio non si concentra solamente sui singoli componenti come i cuscinetti o le tenute. Prende in considerazione l'intera applicazione per osservare le modalità di interazione reciproca dei componenti.

#### Ottimizzazione e verifica del progetto

La SKF vi può aiutare a ottimizzare i progetti in corso o futuri utilizzando un software proprietario di modellazione 3D, che viene utilizzato anche come banco di prova virtuale per confermare l'integrità del progetto.



#### Cuscinetti

La SKF è leader mondiale nella progettazione, nello sviluppo e nella produzione di cuscinetti volventi, snodi, unità e supporti a elevate prestazioni.



#### Manutenzione dei macchinari

Le tecnologie di monitoraggio delle condizioni e i servizi di manutenzione della SKF aiutano a minimizzare i fermi macchina imprevisti, a migliorare l'efficienza operativa e a ridurre i costi di manutenzione.



#### Soluzioni di tenuta

La SKF offre tenute standard e soluzioni personalizzate che aumentano la disponibilità e l'affidabilità della macchina, riducono attriti e perdite di potenza ed estendono la durata del lubrificante.



#### Meccatronica

I sistemi SKF fly-by-wire per aeronautica e i sistemi drive-by-wire per applicazioni off-highway (macchine agricole e carrelli elevatori) possono sostituire i pesanti sistemi meccanici e idraulici e il relativo consumo di grassi e oli.



#### Soluzioni di lubrificazione

Dai lubrificanti specializzati ai sistemi di lubrificazione e servizi all'avanguardia per la gestione della lubrificazione, le soluzioni della SKF aiutano a ridurre i tempi di fermo dovuti alla lubrificazione e il consumo di lubrificanti.



## Sistemi di attuazione e prodotti per il moto lineare

Utilizzando la propria vasta gamma di prodotti, dagli attuatori, alle viti a sfere, alle guide lineari profilate, la SKF può aiutarvi a risolvere le difficoltà più incalzanti relative ai sistemi lineari.



#### The Power of Knowledge Engineering

Basandosi su cinque aree di competenza e su più di 100 anni d'esperienza nelle applicazioni specifiche, la SKF fornisce soluzioni innovative agli 0EM e agli impianti produttivi dei principali settori industriali in tutto il mondo. Queste cinque aree di competenza comprendono cuscinetti e unità, tenute, sistemi di lubrificazione, sistemi di meccatronica (che combinano il know-how meccanico ed elettronico per realizzare sistemi intelligenti) e un'ampia gamma di servizi, dalla modellazione computerizzata 3D all'ottimizzazione dei sistemi per il monitoraggio delle condizioni e l'affidabilità, ai sistemi di gestione delle risorse. Una presenza globale garantisce ai clienti della SKF standard di qualità uniformi e la distribuzione dei prodotti in tutto il mondo.

® SKF e SNFA sono marchi registrati del Gruppo SKF.

© Gruppo SKF 2012

La riproduzione, anche parziale, del contenuto di questa pubblicazione è consentita soltanto previa autorizzazione scritta della SKF Industrie S.p.A. Nella stesura è stata dedicata la massima attenzione al fine di assicurare l'accuratezza dei dati, tuttavia non si possono accettare responsabilità per eventuali errori od omissioni, nonché per danni o perdite diretti o indiretti derivanti dall'uso delle informazioni qui contenute.

**PUB BU/P2 06810/6 IT** · Maggio 2012

Questa pubblicazione è un'integrazione al capitolo 2 della pubblicazione 6002 EN

