# Cuscinetti obliqui a sfere Super-precision ad alta capacità di carico

**SKF** 

Serie 719 .. D (SEB) e 70 .. D (EX)





# Indice

A Informazioni relative al

Il marchio SKF è più forte che mai, a tutto vantaggio del cliente.

Pur mantenendo la propria leadership mondiale nella produzione di cuscinetti, i nuovi sviluppi tecnologici, l'assistenza per i prodotti ed i servizi offerti hanno trasformato la SKF in un fornitore orientato completamente a soluzioni di valore aggiunto per i clienti.

Queste soluzioni consentono ai clienti di aumentare la propria produttività, non soltanto grazie a prodotti innovativi specifici per ogni applicazione, ma anche a strumenti di simulazione avanzata per il design, servizi globali di consulenza, efficienti programmi di manutenzione degli impianti e tecniche di gestione magazzino d'avanguardia sul mercato.

Il marchio SKF significa ancora il meglio dei cuscinetti volventi, ma oggi significa anche molto di più.

SKF – the knowledge engineering company

| prodotto                                 |    |                                      |    |
|------------------------------------------|----|--------------------------------------|----|
|                                          |    | Cuscinetti - dati generali           | 18 |
| Cuscinetti obliqui a sfere Super-precisi | on | Dimensioni d'ingombro                | 18 |
| SKF delle serie 719 D (SEB) e            |    | Tolleranze                           | 18 |
| 70 D ( <i>EX</i> )                       | 3  | Precarico del cuscinetto             | 19 |
|                                          |    | Rigidezza assiale del cuscinetto     | 23 |
| La gamma                                 | 4  | Accoppiamento e serraggio degli      |    |
| Cuscinetti con design D ad alta          |    | anelli del cuscinetto                | 26 |
| capacità di carico                       | 4  | Capacità di carico dei gruppi        |    |
| Serie dei cuscinetti                     | 6  | di cuscinetti                        | 28 |
| Versioni disponibili dei cuscinetti      | 6  | Carichi equivalenti sul cuscinetto   | 28 |
| Cuscinetti singoli e gruppi di           |    | Velocità ammissibili                 | 30 |
| cuscinetti appaiati                      | 7  | Gabbie                               | 30 |
|                                          |    | Tenute                               | 30 |
| Applicazioni                             | 8  | Materiali                            | 31 |
|                                          |    | Trattamento termico                  | 31 |
| _                                        |    | Marcatura sui cuscinetti             |    |
| B Consigli                               |    | e sui gruppi di cuscinetti           | 32 |
|                                          |    | Confezioni                           | 33 |
| Disposizione dei cuscinetti              | 10 | Sistema di denominazione             | 33 |
| Cuscinetti singoli                       | 10 | Sisterna ar denominazione            | 00 |
| Gruppi di cuscinetti                     | 10 | Tabelle di prodotto                  | 36 |
| Tipi di disposizione                     | 11 | rabelle ai prodotto                  | 30 |
| Esempi di applicazione                   | 12 |                                      |    |
| Lisempi di applicazione                  | 12 | D Informazioni supplementa           | ri |
| Lubrificazione                           | 14 | • mormazioni sappiementa             |    |
| Lubrificazione a grasso                  | 14 | Cuscinetti Super-precision           |    |
| Lubrificazione a glasso                  | 16 | SKF di nuova generazione             | 50 |
| Lubi ilicazione a olio                   | 10 | Cuscinetti obliqui a sfere           | 50 |
|                                          |    | •                                    | 50 |
|                                          |    | Super-precision                      | 50 |
|                                          |    |                                      | 51 |
|                                          |    | Super-precision                      | 21 |
|                                          |    | Cuscinetti assiali obliqui a sfere   | ۲4 |
|                                          |    | a doppio effetto Super-precision     | 51 |
|                                          |    | Cuscinetti assiali obliqui a sfere   |    |
|                                          |    | Super-precision per viti a ricircolo |    |
|                                          |    | di sfere                             | 51 |

C Dati relativi al prodotto

SKF - the knowledge engineering

company . . . . . . . . . . . . . . . . . . 54

# Cuscinetti obliqui a sfere Superprecision SKF delle serie 719 .. D (SEB) e 70 .. D (EX)

La vasta gamma di cuscinetti Super-precision della SKF è stata concepita per i mandrini delle macchine utensili e per altre applicazioni di precisione, che richiedono il massimo livello di efficienza dei cuscinetti. Capacità di sopportare velocità sempre più elevate, elevato livello di precisione rotazionale, elevata rigidezza di sistema, minima produzione di calore e bassi livelli di rumorosità e vibrazioni sono solo alcuni dei requisiti prestazionali richiesti. Per le applicazioni in cui l'elevata capacità di carico costituisce un ulteriore requisito operativo, la SKF offre una gamma di cuscinetti obliqui a sfere Super-precision ad alta capacità.

La gamma già esistente di cuscinetti ad alta capacità di carico della serie 72 .. D  $(E\ 200)^{1}$  è stata ampliata con i cuscinetti delle serie 719 .. D (SEB) e 70 .. D (EX).

Entrambe queste serie di cuscinetti Superprecision di nuova concezione presentano un'eccellente capacità di sopportare carichi pesanti nelle applicazioni in cui lo spazio radiale è limitato, il che le rende la scelta ideale per le applicazioni più gravose.

Questi cuscinetti sono caratterizzati da:

- elevata capacità di carico
- capacità di sopportare velocità relativamente elevate
- elevato grado di rigidezza
- maggiore durata operativa del cuscinetto
- bassa produzione di calore
- · ingombro radiale ridotto

I cuscinetti delle serie 719 .. D (SEB) e 70 .. D (EX) sono in grado di garantire un elevato livello di affidabilità e un'eccezionale precisione sia in molteplici applicazioni delle macchine utensili che in applicazioni di altro tipo, comprese quelle dei girostabilizzatori per imbarcazioni, delle microturbine, dei componenti macchina del settore semiconduttori e delle ruote installate sui veicoli da competizione.



<sup>1)</sup> Dove presenti, le denominazioni in parentesi e in corsivo si riferiscono al cuscinetto equivalente della SNFA.

# La gamma

I nuovi cuscinetti Super-precision SKF delle serie 719 .. D (*SEB*) e 70 .. D (*EX*) sono disponibili in una gamma più vasta, e cioè:

- Cuscinetti aperti della serie 719 .. D (SEB) idonei per diametri albero da 10 a 360 mm; versione schermata per diametri da 10 a 150 mm.
- Cuscinetti aperti della serie 70 .. D (EX) idonei per diametri albero da 6 a 240 mm; versione schermata per diametri da 10 a 150 mm.

I cuscinetti di entrambe le serie vengono prodotti con due angoli di contatto differenti e anelli in due tipi di materiale; inoltre possono essere realizzati secondo due classi di tolleranza. La maggior parte dei cuscinetti, di serie, è dotata di gabbia in resina fenolica, ad eccezione delle tre dimensioni più grandi, che sono invece munite di gabbia massiccia in ottone. Le dimensioni più comuni sono disponibili anche con gabbia in polietereterchetone (PEEK), in grado di sopportare una gamma più vasta di temperature di esercizio.

I cuscinetti idonei per il montaggio universale o per il montaggio in gruppi vengono prodotti secondo quattro classi di precarico, così da soddisfare i requisiti per velocità e rigidezza della maggior parte delle applicazioni. Su richiesta, possono essere forniti gruppi di cuscinetti appaiati con precarico speciale e anche versioni per la lubrificazione diretta con olio.

I cuscinetti delle serie 719 .. D (*SEB*) e 70 .. D (*EX*), come tutti i cuscinetti obliqui a sfere, vengono quasi sempre combinati con

un secondo cuscinetto per bilanciare le forze contrarie. Per sopportare carichi maggiori e carichi assiali in ambo le direzioni vengono utilizzati in gruppi che, normalmente, prevedono fino ad un massimo di quattro cuscinetti.



#### Caratteristiche e vantaggi dei cuscinetti obliqui a sfere Super-precision SKF: 719 .. D (SEB) e 70 .. D (EX)

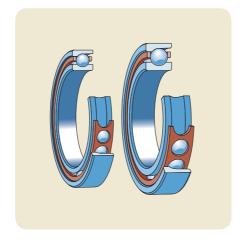
#### Caratteristiche

- Sfere di grandi dimensioni
- Classi di tolleranza P4A o PA9A
- Forma ottimizzata dei raccordi
- Serie dimensionali ISO 19 e 10
- Anelli in acciaio inossidabile a elevato contenuto di azoto (versione NitroMax)
- Schermi non contattanti (versioni schermate)
- Pronti al montaggio (versioni schermate)
- Rilubrificazione non necessaria (versioni schermate)
- Predisposizioni per la lubrificazione (versioni per lubrificazione a olio diretta)
- Anello esterno asimmetrico
- Gabbia in PEEK idonea per temperature elevate, per le dimensioni più diffuse
- Design ottimizzato della gabbia (in resina fenolica od ottone)

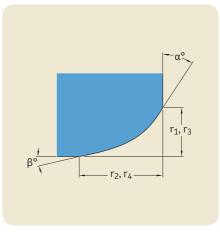
#### Vantaggi

- Elevata capacità di carico, elevato grado di rigidezza
- Eccezionale precisione di rotazione, rodaggio di breve durata
- Montaggio semplificato
- Ingombro radiale ridotto
- Maggiore durata operativa dei cuscinetti, eccellenti proprietà di resistenza alla corrosione
- Protezione dalla contaminazione, capacità di sopportare velocità relativamente elevate
- Tempo di montaggio ridotto
- Riduzione degli interventi di manutenzione
- Lubrificazione a olio ottimizzata
- Capacità di sopportare carichi radiali e assiali che agiscono in una direzione
- Capacità di sopportare temperature di esercizio fino a 150 °C
- Gioco di guida ridotto, buon apporto di lubrificante alle aree di contatto sfere/piste

## Cuscinetti con design D ad alta capacità di carico


I cuscinetti obliqui Super-precision a una corona di sfere delle serie 719 .. D (SEB) e 70 .. D (EX) sono stati concepiti per sopportare carichi pesanti a velocità relativamente elevate.

Le caratteristiche dei cuscinetti con design D comprendono:


- un anello interno simmetrico
- un anello esterno asimmetrico
- sfere di grandi dimensioni
- una gabbia guidata sull'anello esterno
- una forma ottimizzata dei raccordi

Il design dell'anello interno simmetrico e di quello esterno asimmetrico consentono a questi cuscinetti di sopportare carichi radiali e assiali che agiscono in una sola direzione. Rispetto ad altri cuscinetti obliqui a sfere di precisione, quelli con design D sono dotati di sfere di maggiori dimensioni per sopportare carichi più pesanti.

Questi cuscinetti sono dotati di una gabbia in resina fenolica con rinforzo in tessuto oppure massiccia in ottone, che è guidata sull'anello esterno. Entrambi i tipi di gabbia sono stati concepiti per consentire un buon apporto di lubrificante alle aree di contatto sfere/piste. Il gioco di guida tra la gabbia e



I cuscinetti con design D sono dotati di sfere di grandi dimensioni per sopportare carichi nesanti



Forma ottimizzata dei raccordi dell'anello del cuscinetto per facilitare il montaggio.

l'anello esterno è stato ottimizzato per migliorare il comportamento dei cuscinetti a velocità elevate. Su richiesta, i tipi di cuscinetti più diffusi sono disponibili anche con gabbia in polietereterchetone (PEEK) rinforzata con fibra di vetro.

La forma dei raccordi degli anelli interno ed esterno è stata ottimizzata per garantire una maggiore precisione di montaggio. Grazie a questa caratteristica non solo viene facilitato il montaggio, ma si riduce anche il rischio di possibili danneggiamenti ai componenti correlati.



## Serie dei cuscinetti

La gamma di cuscinetti Super-precision presentata in questa brochure comprende due serie dimensionali ISO:

- la serie 19 ultra-leggera
- la serie 10 leggera

Entrambe le serie di cuscinetti sono idonee per il funzionamento a velocità relativamente elevate e il montaggio in spazi radiali ridotti.

# Versioni disponibili dei cuscinetti

I requisiti richiesti per i cuscinetti possono variare in funzione delle condizioni di esercizio delle specifiche applicazioni di precisione. Per soddisfare le varie esigenze, vengono prodotte numerose versioni di cuscinetti obliqui a sfere Super-precision SKF delle serie 719 .. D (SEB) e 70 .. D (EX).

#### Angoli di contatto

I cuscinetti standard vengono prodotti con i seguenti angoli di contatto:

- un angolo di contatto di 15°, suffisso nella denominazione CD (1)
- un angolo di contatto di 25°, suffisso nella denominazione ACD (3)

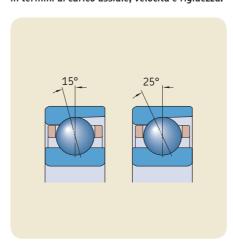
La disponibilità di versioni con due angoli di contatto differenti consente ai progettisti di soddisfare i requisiti richiesti per capacità di carico assiale, capacità di sopportare la velocità e grado di rigidezza e, pertanto, di ottimizzare le proprie applicazioni. Un angolo di contatto maggiore garantisce un grado più elevato di rigidezza assiale e una maggiore capacità di sopportare carichi assiali, mentre viene ridotta la capacità di sopportare la velocità.

#### Materiali per le sfere

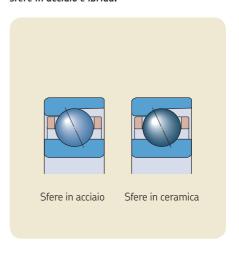
I cuscinetti delle serie 719 .. D (SEB) con diametro foro d  $\leq$  170 mm e 70 .. D (EX) con diametro foro  $\leq$  120 mm sono disponibili, di serie, con:

- sfere in acciaio, nessun suffisso nella denominazione
- sfere in ceramica (nitruro di silicio), suffisso nella denominazione HC (/NS)

I cuscinetti di dimensioni maggiori sono disponibili, di serie, con sfere in acciaio, ma, su richiesta, possono essere dotati di sfere in ceramica.


Dato che le sfere in ceramica sono notevolmente più leggere e più dure di quelle in acciaio, i cuscinetti ibridi sono in grado di garantire un livello di rigidezza più elevato e di operare a velocità considerevolmente maggiori rispetto ai cuscinetti con sfere in acciaio delle stesse dimensioni. Il peso ridotto delle sfere in ceramica permette una riduzione delle forze centrifughe all'interno del cuscinetto e una minore produzione di calore. La riduzione delle forze centrifughe è particolarmente importante nelle applicazioni delle macchine utensili. in cui si verificano frequentemente avviamenti e arresti rapidi, mentre la minore produzione di calore si traduce in un risparmio energetico e nel prolungamento della durata operativa del lubrificante.

#### Confronto tra serie diverse


Se è richiesta una maggiore rigidezza di sistema, i cuscinetti della serie 719, per un determinato diametro esterno, sono idonei per diametri albero maggiori rispetto ai cuscinetti della serie 70.

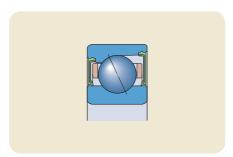
718 719 70 72

Grazie alla disponibilità di due diversi angoli di contatto, sono in grado di soddisfare i requisiti in termini di carico assiale, velocità e rigidezza.



I cuscinetti sono disponibili nelle versioni con sfere in acciaio e ibrida.




#### Cuscinetti schermati

La maggior parte delle dimensioni più diffuse può essere fornita con tenuta integrata su ambo i lati e riempimento con grasso di qualità eccellente. La tenuta forma una luce estremamente piccola con la superficie cilindrica dello spallamento dell'anello interno e, pertanto, non viene compromessa la capacità di sopportare velocità elevate.

Se paragonate alle disposizioni con cuscinetti aperti e tenute esterne, quelle con cuscinetti schermati garantiscono numerosi vantaggi, tra cui:

- prolungamento della durata operativa del cuscinetto
- riduzione delle attività di manutenzione
- riduzione delle scorte di magazzino

La maggior parte delle dimensioni è disponibile nella versione schermata.



 riduzione del rischio di contaminazione del lubrificante durante il montaggio e il funzionamento

I cuscinetti schermati sono identificati dal prefisso S (suffisso /S) nella denominazione.

#### Cuscinetti in acciaio NitroMax

I cuscinetti delle serie 719 .. D (SEB) e 70 .. D (EX) possono essere forniti dotati di anelli realizzati in acciaio NitroMax. NitroMax è una nuova generazione di acciaio inossidabile eccezionalmente resistente alla corrosione, in grado di garantire una maggiore durata a fatica e migliori proprietà di resistenza agli urti. Questo acciaio purissimo consente un prolungamento della durata operativa dei cuscinetti sia nelle applicazioni che prevedono buone condizioni di lubrificazione (pellicola completa) che in quelle in cui la lubrificazione è scarsa (pellicola sottile).

I cuscinetti standard realizzati in acciaio NitroMax sono dotati di sfere in ceramica. Le proprietà degli anelli in acciaio NitroMax combinate con quelle delle sfere in ceramica sono in grado di migliorare notevolmente le prestazioni dei cuscinetti e di prolungare considerevolmente la loro durata operativa, rispetto ai cuscinetti ibridi tradizionali.

I cuscinetti ibridi schermati in acciaio NitroMax sono identificati dal prefisso SV (suffisso /S/XN) nella denominazione.

#### Cuscinetti aperti per lubrificazione a olio diretta

Per consentire la lubrificazione a olio diretta, su richiesta, l'anello esterno dei cuscinetti aperti può essere dotato di due fori di lubrificazione. In base alla serie, i cuscinetti possono essere dotati di scanalatura anulare, nonché di altre caratteristiche di tenuta, come scanalature anulari munite di O-ring.

## Cuscinetti singoli e gruppi di cuscinetti appaiati

I cuscinetti delle serie 719 .. D (*SEB*) e 70 .. D (*EX*) sono disponibili, di serie, come:

- · cuscinetti singoli
- cuscinetti singoli per montaggio universale
- gruppi di cuscinetti appaiati
- gruppi di cuscinetti per montaggio universale

#### Versioni per la lubrificazione a olio diretta Descrizione Versione dei cuscinetti per cuscinetti aperti delle serie 719 .. D (SEB) 70 .. D (EX) Suffisso nella H1 (H1) L (GH) H (H) H1 (H1) L (GH) denominazione **Predisposizioni per la** Due fori di lubrificazione Scanalatura anulare Due fori di lubrificazione sull'anello Scanalatura anulare e due fori di **Jubrificazione** sull'anello esterno e due fori di lubrificalubrificazione sull'anello esterno esterno zione sull'anello esterno Caratteristiche di Nessuna Due scanalature anulari sull'anello Due scanalature Nessuna anulari sull'anello tenuta esterno dotate di O-ring esterno dotate di 0-ring

# **Applicazioni**

La gamma di cuscinetti obliqui a sfere Super-precision SKF delle serie 719 .. D (SEB) e 70 .. D (EX) offre soluzioni per le problematiche connesse a molte disposizioni di cuscinetti. Tra le loro caratteristiche principali, la capacità di garantire una maggiore rigidezza e quella di sopportare carichi pesanti a velocità relativamente elevate rendono questi cuscinetti vantaggiosi per numerose applicazioni differenti.

Nei centri di lavorazione e nelle rettificatrici, ad esempio, la presenza di carichi combinati relativamente pesanti e i requisiti per un elevato grado di precisione di posizionamento rappresentano parametri operativi chiave. Nel settore semiconduttori, la produzione di chip in wafer di silicio, destinati ai circuiti elettronici integrati, influenza vari processi per i quali è richiesto un eccezionale grado di precisione di funzionamento.

Nelle aree fortemente contaminate in cui operano molte applicazioni di precisione, una delle principali cause di cedimento prematuro dei cuscinetti è l'ingresso di agenti contaminanti solidi e/o del liquido di taglio nelle cavità degli stessi. I cuscinetti delle serie S719 .. D (SEB .. /S) e S70 .. D (EX .. /S) sono un'eccellente soluzione, poiché sono praticamente in grado di eliminare questo problema.

#### **Applicazioni**

- Centri di lavorazione (orizzontali e verticali)
- Fresatrici
- Torni
- Rettificatrici per esterni e per superfici
- Perforatrici
- Macchine per il taglio e la levigatura di pietre e vetro
- Semiconduttori
- Girostabilizzatori per imbarcazioni
- Telescopi
- Microturbine
- Ruote delle auto da corsa/super
- Attrezzature del settore medico

#### Requisiti


- Elevata capacità di carico
- Capacità di sopportare velocità
  elevate
- Elevata precisione di posizionamento
- Elevato grado di rigidezza del sistema
- Basso consumo energetico
- Lunga durata operativa
- Montaggio semplificato
- Maggiore tempo di utilizzazione del macchinario
- Elevata densità di potenza abbinata a un ingombro ridotto
- Protezione efficace contro la contaminazione



Cuscinetti obliqui a sfere Super-precision SKF della serie 719 .. D (SEB) e 70 .. D (EX)











# Disposizione dei cuscinetti

Le disposizioni che impiegano cuscinetti obliqui a sfere Super-precision SKF delle serie 719 .. D (SEB) e 70 .. D (EX) possono essere progettate utilizzando sia cuscinetti singoli che gruppi di cuscinetti. Un esempio di disposizione a tre cuscinetti è riportato nella **tabella 1**.

## Cuscinetti singoli

I cuscinetti delle serie 719 .. D (SEB) e 70 .. D (EX) sono disponibili come cuscinetti singoli (stand-alone) oppure come cuscinetti singoli per montaggio universale. Quando si ordinano cuscinetti singoli, è necessario indicare il numero di cuscinetti richiesti.

#### Cuscinetti singoli

I cuscinetti singoli sono idonei per le disposizioni in cui si utilizza un solo cuscinetto in ogni posizione.

Benché le larghezze degli anelli del cuscinetto vengano realizzate secondo tolleranze molto ristrette, questi cuscinetti non sono idonei per essere montati adiacenti gli uni agli altri.

## Cuscinetti singoli per montaggio universale

I cuscinetti per montaggio universale vengono specificamente realizzati in modo che, se montati in ordine casuale ma immediatamente adiacenti, si ottiene un determinato precarico e/o una distribuzione uniforme del carico, senza l'ausilio di spessori o dispositivi equivalenti. Questi cuscinetti possono essere montati in ordine casuale in qualsiasi disposizione di cuscinetti.

I cuscinetti singoli, per montaggio universale, sono disponibili in quattro classi di precarico e sono identificati dal suffisso G (*U*) nella denominazione.

## Gruppi di cuscinetti

I cuscinetti delle serie 719 .. D (SEB) e 70 .. D (EX) sono disponibili come gruppi di cuscinetti appaiati o gruppi di cuscinetti per montaggio universale. Quando si ordinano gruppi di cuscinetti, è necessario indicare il numero di gruppi richiesto (il numero di cuscinetti singoli in ogni gruppo è specificato nella relativa denominazione).

#### Gruppi di cuscinetti appaiati

I cuscinetti possono essere forniti come gruppo completo composto da due, tre o quattro cuscinetti. Questi cuscinetti vengono appaiati in fase di produzione di modo che, se montati adiacenti gli uni agli altri in un ordine specifico, è possibile ottenere un determinato precarico e/o una distribuzione uniforme del carico, senza l'ausilio di spessori o altri dispositivi simili. Il diametro del foro e quello esterno di guesti cuscinetti sono anch'essi appaiati secondo un valore pari al massimo ad un terzo della tolleranza di diametro ammissibile, il che si traduce in una migliore distribuzione del carico a montaggio avvenuto, rispetto ai cuscinetti singoli per montaggio universale.

I gruppi di cuscinetti appaiati sono disponibili in quattro classi di precarico.

## Gruppi di cuscinetti per montaggio universale

Questi cuscinetti possono essere montati in ordine casuale in qualsiasi disposizione di cuscinetti. Il diametro del foro e quello esterno di questi cuscinetti sono anch'essi appaiati secondo un valore pari al massimo

|                                                                                                       |                                                               |                                            | Tabella 1                                   |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|---------------------------------------------|
| Esempio di disposizione a tre cuscinetti                                                              | i                                                             |                                            |                                             |
| Criteri di progettazione                                                                              | Cosa ordinare                                                 | Denominazione del cuscinetto <sup>1)</sup> | Esempio di ordine                           |
| La disposizione di cuscinetti non è nota                                                              | Tre cuscinetti singoli per montaggio universale               | 70 DG/P4A<br>(EX 7CE U)                    | 3 x 7014 CDGA/P4A<br>(3 x EX 70 7CE1 UL)    |
| La disposizione di cuscinetti non è nota e<br>si richiede una distribuzione del carico<br>ottimizzata | Un gruppo di tre cuscinetti per<br>montaggio universale       | 70 D/P4ATG<br>(EX 7CE TU)                  | 1 x 7014 CD/P4ATGA<br>(1 x EX 70 7CE1 TUL)  |
| La disposizione di cuscinetti è nota                                                                  | Tre cuscinetti in un gruppo appaiato                          | 70 D/P4AT<br>(EX 7CE T)                    | 1 x 7014 CD/P4ATBTA<br>(1 x EX 70 7CE1 TDL) |
|                                                                                                       |                                                               |                                            |                                             |
| <sup>1)</sup> Per ulteriori informazioni sulle denominazioni, fa                                      | re riferimento alla <b>tabella 16</b> alle <b>pagine 34</b> e | 35.                                        |                                             |

ad un terzo della tolleranza di diametro ammissibile, il che si traduce in una migliore distribuzione del carico a montaggio avvenuto, rispetto ai cuscinetti singoli per montaggio universale.

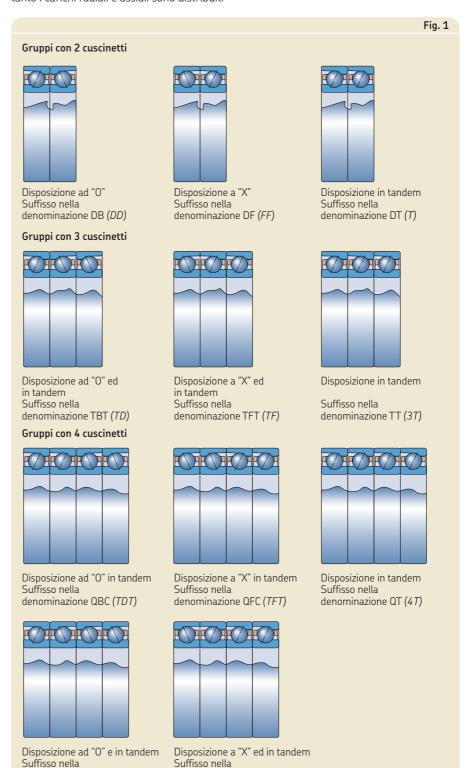
I gruppi di cuscinetti per montaggio universale sono disponibili in quattro classi di precarico. Come i cuscinetti singoli per montaggio universale, anche i gruppi di cuscinetti per montaggio universale presentano il suffisso G (U), ma cambiano la loro posizione nella denominazione (→ tabella 1).

## Tipi di disposizione

I cuscinetti per montaggio universale e i gruppi di cuscinetti appaiati possono essere combinati in disposizioni differenti, che variano in funzione del grado di rigidezza e dei requisiti per il carico imposti dall'applicazione. Le disposizioni possibili sono illustrate nella **fig. 1**, dove sono specificati anche i suffissi utilizzati nelle denominazioni dei gruppi di cuscinetti appaiati.

# Disposizione di cuscinetti ad "O" (dorso a dorso)

Nelle disposizioni ad "O", le linee di carico divergono verso l'asse del cuscinetto. I carichi assiali sono ammessi in entrambe le direzioni, ma solo su un cuscinetto o un gruppo di cuscinetti in ogni direzione. I cuscinetti montati ad "O" garantiscono una disposizione relativamente rigida, che è in grado di sopportare anche momenti di ribaltamento.


# Disposizione di cuscinetti a "X" (faccia a faccia)

Nelle disposizioni a "X" (faccia a faccia), le linee di carico convergono verso l'asse del cuscinetto. I carichi assiali sono ammessi in entrambe le direzioni, ma solo su un cuscinetto o un gruppo di cuscinetti in ogni direzione. Le disposizioni a "X" sono meno idonee per le applicazioni in cui sono previsti momenti di ribaltamento.

# Disposizione di cuscinetti in tandem

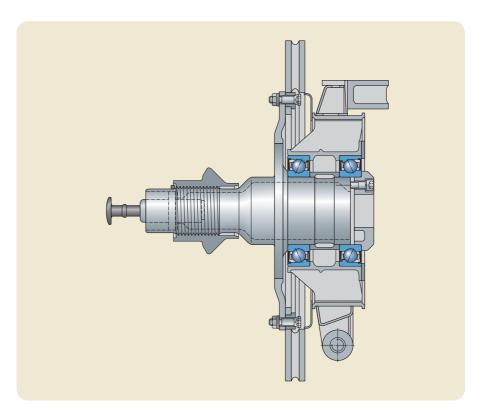
La capacità di carico assiale di una disposizione di cuscinetti può essere aumentata integrando cuscinetti in disposizione in tandem. Nelle disposizioni di cuscinetti in tandem, le linee di carico sono parallele, pertanto i carichi radiali e assiali sono distribuiti

equamente tra i cuscinetti del gruppo. Questi gruppi di cuscinetti sono in grado di sopportare carichi assiali che agiscono in una sola direzione. Se i carichi assiali agiscono nella direzione opposta, o in presenza di carichi combinati, si dovrebbero integrare ulteriori cuscinetti, registrati contro la disposizione in tandem.



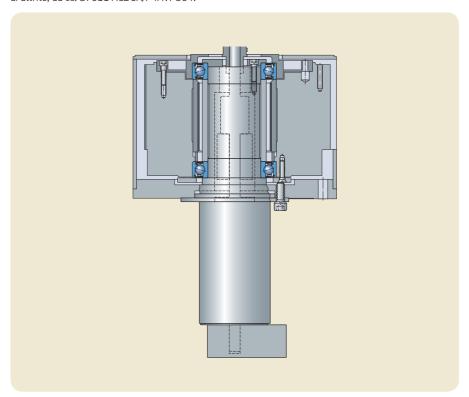
denominazione QFT (3TF)

denominazione QBT (3TD)


## Esempi di applicazione

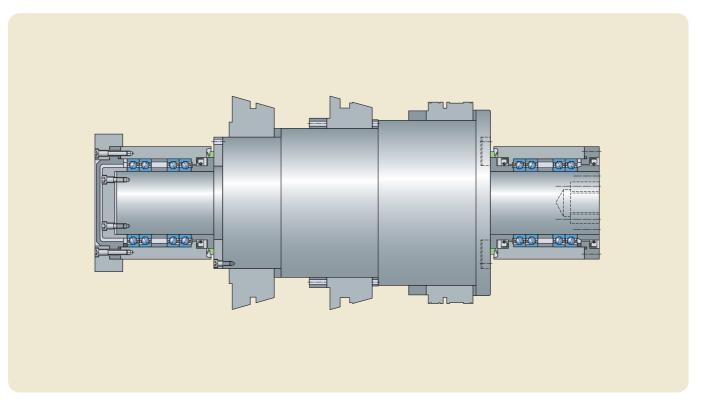
I cuscinetti obliqui a sfere Super-precision vengono comunemente, ma non esclusivamente, utilizzati nei mandrini delle macchine utensili. In base al tipo di macchina utensile e al tipo di utilizzo, per i mandrini possono essere richieste disposizioni di cuscinetti di diversa tipologia.

I cuscinetti delle serie 719 .. D (SEB) e 70 .. D (EX) consentono anche disposizioni compatte, il che costituisce un requisito vantaggioso quando lo spazio radiale è limitato.


Per i centri di lavorazione, i mandrini di rettifica e le fresatrici che sono esposti a pesanti carichi combinati a velocità rotazionali relativamente elevate, vengono comunemente utilizzate disposizioni che prevedono gruppi di cuscinetti obliqui a sfere Superprecision delle serie 719 .. D (SEB) e 70 .. D (EX) sia sull'estremità utensile che su quella non-utensile dell'albero.

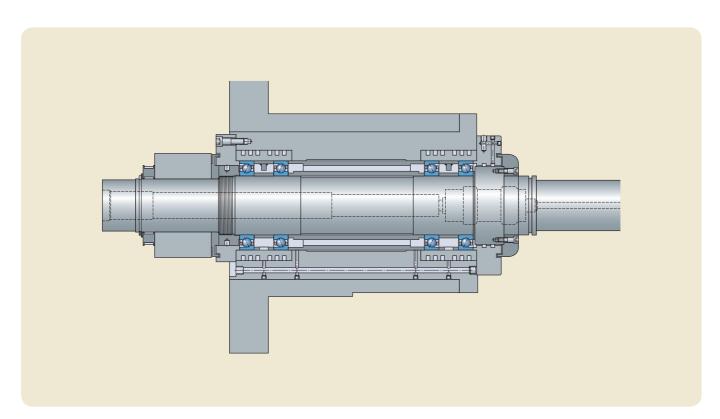
Quando sono previste velocità rotazionali elevate ed è richiesta una notevole capacità di carico, come nel caso dei girostabilizzatori per imbarcazioni, i cuscinetti obliqui a sfere ibridi della serie 70 .. D (EX) rappresentano la soluzione ideale.




#### Ruote delle auto da corsa

Negli ambienti delle competizioni automobilistiche, elevata precisione di funzionamento, basso coefficiente di attrito e funzione di tenuta efficiente costituiscono parametri operativi chiave. In queste applicazioni, le ruote installano due cuscinetti obliqui a sfere Super-precision schermati per montaggio universale in disposizione ad "O". Questi cuscinetti sono stati concepiti per garantire principalmente un basso coefficiente di attrito, ad es. S7011 ACDGA/P4AVP304.




#### Unità per rilevare difetti sui chip in wafer al silicio

Queste unità, che sono dotate di otto specchi, rilevano i difetti sui chip in wafer di silicio utilizzando un raggio laser di alta precisione. Le unità sono composte da una coppia appaiata di cuscinetti obliqui a sfere Superprecision schermati in disposizione ad "O", ad es. S71906 CD/P4ADBA (SEB 30/S 7CE1 DD2,5daN). I cuscinetti vengono riempiti con un grasso speciale in condizioni di pulizia estrema.



#### Rettificatrice senza centri

Una rettificatrice senza centri ad alta capacità genera carichi pesanti e richiede un elevato grado di rigidezza di sistema. Spesso, lo spazio radiale è limitato. Questo mandrino è dotato di due gruppi di quattro cuscinetti obliqui a sfere Super-precision, in disposizione ad "O" in tandem, ad es. 2 x 71926 ACD/P4AQBCA (SEB 130 7CE3 TDTL), e separati da distanziali accoppiati di precisione.



#### Centro di lavorazione orizzontale

Questo mandrino, che opera a velocità elevate ed è soggetto a carichi pesanti, monta un gruppo appaiato di quattro cuscinetti obliqui a sfere Super-precision in disposizione ad "O" in tandem e separati da un gruppo distanziali accoppiati di precisione, ad es. 7020 CD/P4AQBCA (EX 100 7CE1 TDT62daN). Il mandrino è stato concepito per il metodo di lubrificazione olio-aria.

# Lubrificazione

Il calore prodotto dall'attrito costituisce una minaccia costante per le attrezzature di produzione. Un metodo per ridurre il calore e il tasso di usura associati all'attrito, soprattutto nei cuscinetti, consiste nell'assicurarsi che venga erogata la giusta quantità di lubrificante a tutti i componenti che necessitano di lubrificazione.

## Lubrificazione a grasso Cuscinetti aperti

Per la maggior parte delle applicazioni in cui vengono impiegati cuscinetti aperti delle serie 719 .. D (*SEB*) e 70 .. D (*EX*) è idoneo un grasso a base di olio minerale con addensante al litio. Questo tipo di grassi, infatti, aderisce bene alle superfici del cuscinetto ed è idoneo per temperature di esercizio comprese tra –30 e +100 °C.

Nelle applicazioni a velocità elevata, il riempimento di grasso dovrebbe occupare meno del 30% dello spazio libero nel cuscinetto. Il riempimento iniziale di grasso dipende sia dalla serie e dalle dimensioni del cuscinetto che dal fattore velocità, cioè

 $A = n d_m$ 

dove

A = fattore velocità [mm/min]

n = velocità rotazionale [giri/min]

d<sub>m</sub> = diametro medio del cuscinetto

= 0,5 (d + D) [mm]

Il riempimento iniziale di grasso per i cuscinetti aperti si può valutare utilizzando la formula

$$G = KG_{ref}$$

dove

G = riempimento iniziale di grasso [cm3]

K = un fattore di calcolo che dipende dal fattore velocità A (→ diagramma 1)

G<sub>ref</sub> = quantità di grasso di riferimento (→ tabella 1) [cm³]

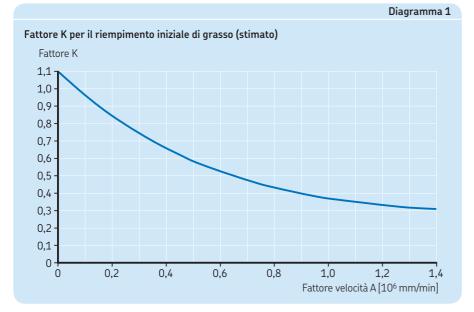
#### Cuscinetti schermati

Per quanto riguarda i cuscinetti schermati delle serie S 719 .. D (SEB .. /S) e S70 .. D (EX .. /S) sono riempiti con un grasso di alta qualità con basso coefficiente di viscosità, che occupa circa il 15% dello spazio libero nel cuscinetto. In condizioni normali di esercizio, questi cuscinetti non richiedono alcuna rilubrificazione.

Le caratteristiche di questo grasso sono elencate di seguito:

- capacità di sopportare velocità elevate
- eccellenti proprietà di resistenza all'invecchiamento
- ottime proprietà antiruggine

Le specifiche tecniche di questo grasso sono riportate nella **tabella 2**.


## Rodaggio dei cuscinetti aperti e dei cuscinetti schermati lubrificati a grasso

Il funzionamento dei cuscinetti Super-precision lubrificati a grasso è caratterizzato inizialmente da un momento di attrito relativamente elevato. Se i cuscinetti vengono fatti funzionare ad alta velocità senza un periodo di rodaggio, l'aumento di temperatura può essere notevole. Il momento di attrito relativamente elevato è dovuto al movimento del grasso ed è necessario un determinato periodo di tempo perché il grasso in eccesso venga espulso dall'area di contatto.

Nel caso dei cuscinetti aperti, questo periodo può essere ridotto al minimo applicando, durante la fase di assemblaggio, una piccola quantità di grasso distribuita uniformemente su ambo i lati del cuscinetto. Anche l'inserimento di distanziali tra due cuscinetti adiacenti si è rivelato vantaggioso (

Regolazione del precarico mediante distanziali, pagina 23).

Il tempo necessario a stabilizzare la temperatura di esercizio dipende da numerosi fattori – il tipo di grasso, il riempimento iniziale, il metodo di applicazione del grasso ai



## cuscinetti e la procedura di rodaggio (→ diagramma 2 a pagina 16).

Se idoneamente rodati, i cuscinetti Super-precision possono operare con una quantità minima di lubrificante, il che rende possibile ottenere il minore momento di attrito e temperature più basse. Il grasso che si deposita sui lati del cuscinetto funge da riserva. In questo modo l'olio può penetrare nella pista per garantire una lubrificazione efficiente a lungo termine.

Il rodaggio può essere realizzato in molteplici modi. Se possibile, e indipendentemente dalla procedura scelta, il rodaggio dovrebbe prevedere la rotazione del cuscinetto sia in senso orario che antiorario. Per ulteriori informazioni sulle procedure di rodaggio, fare riferimento al Catalogo Tecnico Interattivo della SKF disponibile on-line nel sito www.skf.com.

| riserva. III quest | o modo rono par    | penedare i                                           | are mermerito at               |
|--------------------|--------------------|------------------------------------------------------|--------------------------------|
| Quantità di gra    | sso di riferimento | o per valutare il r                                  | Tabella 1<br>iempimento        |
| iniziale di grass  |                    |                                                      | o di riferimento <sup>1)</sup> |
| Diametro foro      | Dimensioni         | per cuscinetti ap<br>719 D (SEB)<br>G <sub>ref</sub> | erti delle serie               |
| mm                 |                    | cm <sup>3</sup>                                      |                                |
|                    | ,                  |                                                      |                                |
| 6<br>7             | 6<br>7             | _                                                    | 0,09<br>0,12                   |
| ,<br>8<br>9        | ,<br>8<br>9        | -                                                    | 0,15                           |
| 10                 | 00                 | 0,12                                                 | 0,18<br>0,24                   |
| 12                 | 01                 | 0,12                                                 | 0,27                           |
| 15<br>17           | 02<br>03           | 0,21<br>0,24                                         | 0,39<br>0,54                   |
| 20<br>25           | 04<br>05           | 0,45<br>0,54                                         | 0,9<br>1,02                    |
| 30                 | 06                 | 0,63                                                 | 1,59                           |
| 35<br>40           | 07<br>08           | 0,93<br>1,44                                         | 1,98<br>2,4                    |
| 45<br>50           | 09<br>10           | 1,62<br>1,74                                         | 3,3<br>3,6                     |
| 55                 | 11                 | 2,49                                                 | 5,1                            |
| 60<br>65           | 12<br>13           | 2,7<br>2,85                                          | 5,4<br>5,7                     |
| 70<br>75           | 14<br>15           | 4,5<br>5,1                                           | 8,1<br>8,4                     |
| 80                 | 16                 | 5,1                                                  | 11,1                           |
| 85<br>90           | 17<br>18           | 7,2<br>7,5                                           | 11,7<br>15                     |
| 95<br>100          | 19<br>20           | 7,8<br>10,5                                          | 15,6<br>16,2                   |
| 105                | 21                 | 11,1                                                 | 20,4                           |
| 110<br>120         | 22<br>24           | 11,4<br>15,3                                         | 25,5<br>27                     |
| 130<br>140         | 26<br>28           | 20,4<br>21,6                                         | 42<br>45                       |
| 150                | 30                 | 33                                                   | 54                             |
| 160<br>170         | 32<br>34           | 33<br>36                                             | 66<br>84                       |
| 180<br>190         | 36<br>38           | 54<br>57                                             | 111<br>114                     |
| 200                | 40                 | 81                                                   | 153                            |
| 220<br>240         | 44<br>48           | 84<br>93                                             | 201<br>216                     |
| 260<br>280         | 52<br>56           | 150<br>159                                           |                                |
| 300<br>320         | 60<br>64           | 265                                                  | -                              |
| 340                | 68<br>72           | 282<br>294<br>313                                    | -                              |
| 360                | 14                 | 212                                                  | _                              |

|                                                     |                                | Tabella 2 |
|-----------------------------------------------------|--------------------------------|-----------|
| Specifiche tecniche del grasso n                    | ei cuscinetti schermati        |           |
| Proprietà                                           | Specifiche del grasso          |           |
| Addensante                                          | Sapone speciale al litio       |           |
| Tipo di olio di base                                | Estere/PAO                     |           |
| Classe di consistenza NLGI                          | 2                              |           |
| Gamma di temperature<br>[°C]<br>[°F]                | da –40 a +120<br>da –40 a +250 |           |
| Viscosità cinematica [mm²/s]<br>a 40 °C<br>a 100 °C | 25<br>6                        |           |
|                                                     |                                |           |
|                                                     |                                |           |
|                                                     |                                |           |
|                                                     |                                |           |
|                                                     |                                |           |
|                                                     |                                |           |

1) Si riferisce a un grado di riempimento del 30%

## Lubrificazione a olio

La lubrificazione a olio per i cuscinetti aperti delle serie 719 .. D (SEB) e 70 .. D (EX) è consigliata per le applicazioni in cui le velocità estremamente elevate rendono impossibile utilizzare il grasso come lubrificante.

## Metodo di lubrificazione olio-aria

In alcune applicazioni di precisione, le velocità rotazionali molto elevate e le basse temperature di esercizio richieste impongono, di norma, il metodo della lubrificazione olioaria. Con il metodo olio-aria, anche chiamato metodo a goccia d'olio, quantità accuratamente dosate di olio vengono erogate ad ogni singolo cuscinetto mediante aria compressa. Nel caso dei gruppi di cuscinetti, ogni singolo cuscinetto è dotato di un iniettore separato. La maggior parte dei design

prevedono distanziali speciali che incorporano ugelli per l'olio.

Per valutare la quantità di olio da erogare ad ogni cuscinetto, in caso di esercizio a velocità molto elevate, si può utilizzare la formula

 $Q = 1.3 d_{m}$ 

dove

Q = portata dell'olio [mm<sup>3</sup>/h]

d<sub>m</sub> = diametro medio del cuscinetto

= 0.5 (d + D) [mm]

La portata dell'olio così calcolata deve essere verificata durante l'esercizio e regolata in funzione delle temperature risultanti.

L'olio viene erogato, da un dosatore, alle linee di mandata ad intervalli regolari. L'olio ricopre la superficie interna delle linee di mandata e "striscia" verso gli ugelli (→ fig. 1), tramite i quali viene erogato ai cuscinetti. Gli ugelli per l'olio devono essere posizionati in maniera idonea (→ tabella 3), per garantire che l'olio venga erogato all'area di contatto tra sfere e piste ed evitare interferenze con la gabbia.

Per i cuscinetti obliqui a sfere Super-precision si consigliano normalmente tipi di olio di alta qualità senza additivi EP. Si utilizzano solitamente tipi di olio con viscosità tra 40 e 100 mm²/s a 40 °C. Si consiglia, inoltre, l'impiego di un filtro per evitare che particelle > 5 µm raggiungano i cuscinetti.

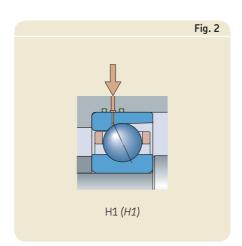
# Valvola di mescolatura da 0,5 a 10 m Bobina elicoidale Linea olio + aria Ugello

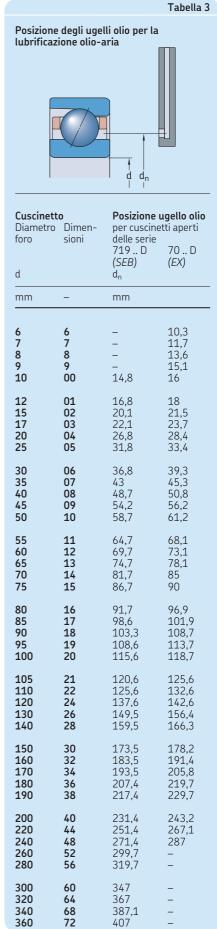
## Diagramma 2 Rappresentazione grafica della procedura di rodaggio Temperatura [°C] Velocità [giri/min] Limite assoluto di temperatura 60 Velocità di esercizio del sistema 10-15 min. per temperatura stabilizzata $\rightarrow$ Fase 1 → Fase 2 $\rightarrow$ Fase 3 → Fase 4 → Fase 5 Tempo [h] - Temperatura di esercizio Velocità

# Metodo di lubrificazione a getto di olio

In caso di esercizio a velocità molto elevate, i cuscinetti devono ricevere una quantità sufficiente, ma non eccessiva, di olio per garantire una lubrificazione efficiente, senza che si verifichino indesiderati aumenti della temperatura di esercizio. Un metodo particolarmente efficiente per ottenere questo risultato è quello del getto d'olio, in cui un getto d'olio ad alta pressione viene diretto verso un lato del cuscinetto.

La velocità del getto d'olio deve essere sufficientemente elevata (almeno 15 m/s) per superare la turbolenza esistente intorno al cuscinetto in rotazione. È importante che l'olio che lascia il cuscinetto venga scaricato dalla disposizione attraverso dotti di dimensioni adeguate.


#### Lubrificazione a olio diretta


In caso di velocità di esercizio molto elevate, si è rivelato vantaggioso il metodo che prevede l'iniezione di piccole quantità di una miscela di olio e aria nel cuscinetto. Con questo metodo si evita la dispersione del lubrificante, poiché lo stesso viene erogato, attraverso l'anello esterno, in maniera diretta e sicura all'area di contatto tra sfere/pista. In questo modo è possibile ridurre al minimo il consumo di lubrificante e ottimizzare le prestazioni dei cuscinetti.

Per la lubrificazione a olio diretta sono disponibili due versioni di cuscinetti della serie 719 .. D (SEB) e tre della serie 70 .. D (EX) (→ Versioni dei cuscinetti, pagina 6).

Per scegliere la versione più idonea per la lubrificazione a olio diretta, si consiglia di tenere in considerazione quanto segue:

- I cuscinetti dotati di scanalatura anulare sull'anello esterno, che coincide con i due fori di lubrificazione, consentono di erogare il lubrificante in maniera più affidabile attraverso l'anello esterno, rispetto a quelli senza scanalatura anulare.
- I cuscinetti con fori di lubrificazione realizzati sul lato più spesso dello spallamento del cuscinetto permettono di erogare il lubrificante molto vicino all'area di contatto sfere/pista. Questi cuscinetti possono pertanto essere utilizzati per operare alle massime velocità.
- I cuscinetti dotati di O-ring nell'anello esterno costituiscono una soluzione eccellente per evitare perdite di lubrificante tra il diametro esterno del cuscinetto e il foro dell'alloggiamento, poiché non richiedono ulteriori lavorazioni. Quando si utilizzano cuscinetti che non sono dotati di questa caratteristica di tenuta, la SKF consiglia di lavorare il foro dell'alloggiamento e integrare degli O-ring nella disposizione (→ fig. 2).





# Cuscinetti - dati generali

## Dimensioni d'ingombro

Le principali dimensioni d'ingombro dei cuscinetti obliqui a sfere Super-precision SKF sono conformi alla ISO 15:2011:

- Le dimensioni d'ingombro dei cuscinetti della serie 719 .. D (SEB) sono conformi alla serie dimensionale ISO 19.
- Le dimensioni d'ingombro dei cuscinetti della serie 70 .. D (EX) sono conformi alla serie dimensionale ISO 10.

#### Dimensioni del raccordo

I valori minimi per le dimensioni del raccordo in direzione radiale  $(r_1, r_3)$  e in direzione assiale  $(r_2, r_4)$  sono riportati nelle tabelle di prodotto da **pagina 36**.

I valori per il raccordo sull'anello interno e sul lato assiale di quello esterno sono conformi alla ISO 15:2011. I valori per il lato non assiale dell'anello esterno sono conformi alla ISO 12044:1995, dove applicabile.

I limiti superiori ammissibili per i raccordi sono conformi alla ISO 582:1995.

## **Tolleranze**

I cuscinetti delle serie 719 .. D (SEB) e 70 .. D (EX) vengono prodotti, di serie, secondo la classe di tolleranza P4A. Su richiesta, si possono realizzare cuscinetti conformi alla classe di tolleranza PA9A di maggiore precisione.

I valori di tolleranza sono riportati nelle tabelle indicate di seguito:

|                         |                          |                               |                        |                               |                        |                          |                         |                                 |                                             |                         |                              |                             |                               |                              | Tabella                  |
|-------------------------|--------------------------|-------------------------------|------------------------|-------------------------------|------------------------|--------------------------|-------------------------|---------------------------------|---------------------------------------------|-------------------------|------------------------------|-----------------------------|-------------------------------|------------------------------|--------------------------|
| Tollera                 | nze della                | a classe P                    | 4A                     |                               |                        |                          |                         |                                 |                                             |                         |                              |                             |                               |                              |                          |
| Anello i<br>d<br>oltre  | interno<br>incl.         | Δ <sub>dmp</sub><br>max       | min                    | <b>Δ</b> <sub>ds</sub><br>max | min                    | V <sub>dp</sub><br>max   | V <sub>dmp</sub><br>max | <b>Δ</b> <sub>Bs</sub><br>max   | min                                         | Δ <sub>B1s</sub><br>max | min                          | V <sub>Bs</sub><br>max      | <b>K</b> ia<br>max            | <b>S<sub>d</sub></b><br>max  | <b>S</b> ia<br>max       |
| mm                      |                          | μm                            |                        | μm                            |                        | μm                       | μm                      | μm                              |                                             | μm                      |                              | μm                          | μm                            | μm                           | μm                       |
| 2,5<br>10<br>18<br>30   | 10<br>18<br>30<br>50     | 0<br>0<br>0<br>0              | -4<br>-4<br>-5<br>-6   | 0<br>0<br>0                   | -4<br>-4<br>-5<br>-6   | 1,5<br>1,5<br>1,5<br>1,5 | 1<br>1<br>1             | 0<br>0<br>0                     | -40<br>-80<br>-120<br>-120                  | 0<br>0<br>0<br>0        | -250<br>-250<br>-250<br>-250 | 1,5<br>1,5<br>1,5<br>1,5    | 1,5<br>1,5<br>2,5<br>2,5      | 1,5<br>1,5<br>1,5<br>1,5     | 1,5<br>1,5<br>2,5<br>2,5 |
| 50<br>80<br>120<br>150  | 80<br>120<br>150<br>180  | 0<br>0<br>0                   | -7<br>-8<br>-10<br>-10 | 0<br>0<br>0                   | -7<br>-8<br>-10<br>-10 | 2<br>2,5<br>6<br>6       | 1,5<br>1,5<br>3         | 0<br>0<br>0                     | -150<br>-200<br>-250<br>-250                | 0<br>0<br>0<br>0        | -250<br>-380<br>-380<br>-380 | 1,5<br>2,5<br>4<br>4        | 2,5<br>2,5<br>4<br>6          | 1,5<br>2,5<br>4<br>5         | 2,5<br>2,5<br>4<br>6     |
| 180<br>250<br>315       | 250<br>315<br>400        | 0<br>0<br>0                   | -12<br>-13<br>-16      | 0<br>0<br>0                   | -12<br>-13<br>-16      | 7<br>8<br>10             | 4<br>5<br>6             | 0<br>0<br>0                     | -300<br>-350<br>-400                        | 0<br>0<br>0             | -500<br>-550<br>-600         | 5<br>6<br>6                 | 7<br>8<br>9                   | 6<br>7<br>8                  | 7<br>7<br>8              |
| Anello<br>D<br>oltre    | esterno<br>incl.         | <b>Δ<sub>Dmp</sub></b><br>max | min                    | <b>Δ</b> <sub>Ds</sub><br>max | min                    | V <sub>Dp</sub><br>max   | V <sub>Dmp</sub><br>max | ∆ <sub>Cs</sub> ,∆ <sub>C</sub> | ls                                          |                         |                              | V <sub>Cs</sub>             | <b>K</b> <sub>ea</sub><br>max | <b>S</b> <sub>D</sub><br>max | S <sub>ea</sub><br>max   |
| mm                      |                          | μm                            |                        | μm                            |                        | μm                       | μm                      |                                 |                                             |                         |                              | μm                          | μm                            | μm                           | μm                       |
| 10<br>18<br>30<br>50    | 18<br>30<br>50<br>80     | 0<br>0<br>0                   | -4<br>-5<br>-6<br>-7   | 0<br>0<br>0                   | -4<br>-5<br>-6<br>-7   | 1,5<br>2<br>2<br>2       | 1<br>1,5<br>1,5<br>1,5  |                                 | sono iden<br>interno do<br><sub>B1s</sub> ) |                         |                              | 1,5<br>to 1,5<br>1,5<br>1,5 | 1,5<br>1,5<br>2,5<br>4        | 1,5<br>1,5<br>1,5<br>1,5     | 1,5<br>1,5<br>2,5<br>4   |
| 80<br>120<br>150<br>180 | 120<br>150<br>180<br>250 | 0<br>0<br>0<br>0              | -8<br>-9<br>-10<br>-11 | 0<br>0<br>0<br>0              | -8<br>-9<br>-10<br>-11 | 2,5<br>4<br>6<br>6       | 1,5<br>1,5<br>3<br>4    |                                 |                                             |                         |                              | 2,5<br>2,5<br>4<br>5        | 5<br>5<br>6<br>8              | 2,5<br>2,5<br>4<br>5         | 5<br>5<br>6<br>8         |
| 250<br>315<br>400       | 315<br>400<br>500        | 0<br>0<br>0                   | -13<br>-15<br>-20      | 0<br>0<br>0                   | -13<br>-15<br>-20      | 8<br>9<br>12             | 5<br>6<br>8             |                                 |                                             |                         |                              | 5<br>7<br>8                 | 9<br>10<br>13                 | 6<br>8<br>10                 | 8<br>10<br>13            |

- classe di tolleranza P4A (migliore rispetto alla ABEC 7) nella tabella 1
- classe di tolleranza PA9A (migliore rispetto alla ABEC 9) nella tabella 2

I simboli relativi alle tolleranze utilizzati in queste tabelle sono riportati, insieme al loro significato, nella **tabella 3** a **pagina 20**.

# Precarico del cuscinetto

I cuscinetti obliqui a sfere Super-precision singoli non presentano alcun precarico. Il precarico si può ottenere solamente posizionando un cuscinetto contro un altro per realizzare il vincolo nella direzione opposta.

## Precarico in gruppi di cuscinetti per montaggio universale e gruppi di cuscinetti appaiati prima del montaggio

I cuscinetti per montaggio universale e i gruppi di cuscinetti appaiati vengono prodotti in modo da ottenere, prima del montaggio, un determinato precarico, quando i cuscinetti vengono posizionati gli uni contro gli altri.

Per soddisfare i molteplici requisiti in termini di velocità rotazionale e rigidezza, i cuscinetti delle serie 719 .. D (SEB) e 70 .. D (EX) vengono prodotti secondo quattro diverse classi di precarico:

- classe A, precarico ultra-leggero
- classe B, precarico leggero
- classe C, precarico moderato
- classe D, precarico pesante

Il grado di precarico dipende dalla serie del cuscinetto, dall'angolo di contatto, dalla geometria interna e dalle dimensioni del cuscinetto e si applica ai gruppi composti da due cuscinetti in disposizione ad "0" oppure a "X", come riportato nella **tabella 4** a **pagina 21**.

I gruppi composti da tre o quattro cuscinetti presentano un precarico maggiore rispetto a quelli con due cuscinetti. Il precarico di questi gruppi di cuscinetti si ottiene moltiplicando i valori riportati nella **tabella 4** a **pagina 21** per un fattore di:

- 1,35 per disposizioni TBT (*TD*) e TFT (*TF*)
- 1,6 per disposizioni QBT (3TD) e QFT (3TF)
- 2 per disposizioni QBC (TDT) e QFC (TFT)

Su richiesta, è possibile fornire cuscinetti con un precarico speciale. Questi gruppi di cuscinetti sono identificati con il suffisso G nella denominazione, seguito da un numero che indica il valore del precarico espresso in daN. Il precarico speciale non è applicabile per gruppi di cuscinetti per montaggio universale che sono formati da tre o più cuscinetti (suffissi TG e GQ).

|                                          |                        |                                |                      |                               |                      |                              |                         |                                                           |                      |                          |                        |                        |                              |                             | Tabella                      |
|------------------------------------------|------------------------|--------------------------------|----------------------|-------------------------------|----------------------|------------------------------|-------------------------|-----------------------------------------------------------|----------------------|--------------------------|------------------------|------------------------|------------------------------|-----------------------------|------------------------------|
| Tolleranz                                | e class                | e PA9A                         |                      |                               |                      |                              |                         |                                                           |                      |                          |                        |                        |                              |                             |                              |
| <b>Anello int</b><br><b>d</b><br>oltre i | t <b>erno</b><br>incl. | <b>Δ</b> <sub>dmp</sub><br>max | min                  | <b>Δ</b> <sub>ds</sub><br>max | min                  | V <sub>dp</sub><br>max       | V <sub>dmp</sub><br>max | Δ <sub>Bs</sub><br>max                                    | min                  | Δ <sub>B1s</sub><br>max  | min                    | V <sub>Bs</sub><br>max | <b>K<sub>ia</sub></b><br>max | <b>S<sub>d</sub></b><br>max | <b>S<sub>ia</sub></b><br>max |
| mm                                       |                        | μm                             |                      | μm                            |                      | μm                           | μm                      | μm                                                        |                      | μm                       |                        | μm                     | μm                           | μm                          | μm                           |
| 10 1                                     | 10<br>18<br>30         | 0<br>0<br>0                    | -2,5<br>-2,5<br>-2,5 | 0<br>0<br>0                   | -2,5<br>-2,5<br>-2,5 | 1,5<br>1,5<br>1,5            | 1<br>1<br>1             | 0<br>0<br>0                                               | -40<br>-80<br>-120   | 0<br>0<br>0              | -250<br>-250<br>-250   | 1,5<br>1,5<br>1,5      | 1,5<br>1,5<br>2,5            | 1,5<br>1,5<br>1,5           | 1,5<br>1,5<br>2,5            |
| 50 8                                     | 50<br>80<br>120        | 0<br>0<br>0                    | -2,5<br>-4<br>-5     | 0<br>0<br>0                   | -2,5<br>-4<br>-5     | 1,5<br>2<br>2,5              | 1<br>1,5<br>1,5         | 0<br>0<br>0                                               | -120<br>-150<br>-200 | 0<br>0<br>0              | -250<br>-250<br>-380   | 1,5<br>1,5<br>2,5      | 2,5<br>2,5<br>2,5            | 1,5<br>1,5<br>2,5           | 2,5<br>2,5<br>2,5            |
| 150 :                                    | 150<br>180<br>250      | 0<br>0<br>0                    | -7<br>-7<br>-8       | 0<br>0<br>0                   | -7<br>-7<br>-8       | 4<br>4<br>5                  | 3<br>3<br>4             | 0<br>0<br>0                                               | -250<br>-250<br>-300 | 0<br>0<br>0              | -380<br>-380<br>-500   | 2,5<br>4<br>5          | 2,5<br>5<br>5                | 2,5<br>4<br>5               | 2,5<br>5<br>5                |
| <b>Anello est D</b> oltre i              | <b>terno</b><br>incl.  | <b>Δ</b> <sub>Dmp</sub><br>max | min                  | <b>Δ</b> <sub>Ds</sub><br>max | min                  | <b>V<sub>Dp</sub></b><br>max | V <sub>Dmp</sub><br>max | $\Delta_{Cs}$ , $\Delta_{C1}$                             | s                    |                          |                        | V <sub>Cs</sub>        | <b>K</b> ea<br>max           | S <sub>D</sub><br>max       | S <sub>ea</sub><br>max       |
| mm                                       |                        | μm                             |                      | μm                            |                      | μm                           | μm                      |                                                           |                      |                          |                        | μm                     | μm                           | μm                          | μm                           |
| 18 3                                     | 18<br>30<br>50         | 0<br>0<br>0                    | -2,5<br>-4<br>-4     | 0<br>0<br>0                   | -2,5<br>-4<br>-4     | 1,5<br>2<br>2                | 1<br>1,5<br>1,5         | l valori<br>l'anello<br>(Δ <sub>Bs</sub> , Δ <sub>E</sub> |                      | tici a que<br>ello stess | lli per<br>o cuscineti | 1,5<br>to 1,5<br>1,5   | 1,5<br>1,5<br>2,5            | 1,5<br>1,5<br>1,5           | 1,5<br>1,5<br>2,5            |
| 80 1                                     | 80<br>120<br>150       | 0<br>0<br>0                    | -4<br>-5<br>-5       | 0<br>0<br>0                   | -4<br>-5<br>-5       | 2<br>2,5<br>2,5              | 1,5<br>1,5<br>1,5       |                                                           |                      |                          |                        | 1,5<br>2,5<br>2,5      | 4<br>5<br>5                  | 1,5<br>2,5<br>2,5           | 4<br>5<br>5                  |
| 150 1                                    | 180<br>250             | 0                              | -7<br>-8             | 0                             | -7<br>-8             | 4<br>5                       | 3<br>4                  |                                                           |                      |                          |                        | 2,5<br>4<br>5<br>7     | 5<br>7                       | 2,5<br>4                    | 5<br>7                       |

# Precarico in gruppi di cuscinetti dopo il montaggio

I gruppi di cuscinetti per montaggio universale e i gruppi di cuscinetti appaiati possono presentare, dopo il montaggio, un precarico maggiore rispetto a quello che viene conferito loro in fase di produzione. L'aumento del precarico dipende principalmente dalle tolleranze effettive per le sedi del cuscinetto sull'albero e nel foro dell'alloggiamento. L'aumento del precarico può anche essere causato da scostamenti dei parametri geometrici dei componenti correlati, come la cilindricità, la perpendicolarità o la concentricità delle sedi del cuscinetto.

Un aumento di precarico durante l'esercizio può anche essere dovuto a:

- velocità rotazionale dell'albero per disposizioni a posizione costante
- differenze di temperatura tra anello interno, anello esterno e sfere
- differenti coefficienti di dilatazione termica per i materiali dell'albero e dell'alloggiamento rispetto all'acciaio per cuscinetti

Se i cuscinetti vengono montati senza interferenza su un albero in acciaio e in un alloggiamento a parete spessa in acciaio o in ghisa, il precarico può essere determinato con sufficiente precisione dalla formula

$$G_m = f f_1 f_2 f_{HC} G_{A.B.C.D}$$

dove

 $G_m$  = precarico nel gruppo di cuscinetti dopo il montaggio [N]

G<sub>A,B,C,D</sub> = precarico del gruppo di cuscinetti prima del montaggio (→ tabella 4) [N]

f

- un fattore relativo al cuscinetto che dipende dalla serie e dalle dimensioni del cuscinetto stesso
   (→ tabella 5 a pagina 22)
- f<sub>1</sub> = un fattore di correzione determinato dall'angolo di contatto (→ tabella 6 a pagina 23)
- f<sub>2</sub> = un fattore di correzione determinato dalla classe di precarico (→ tabella 6 a pagina 23)
- f<sub>HC</sub> = un fattore di correzione per cuscinetti ibridi (→ tabella 6 a pagina 23)

| Simbolo<br>relativo alle<br>tolleranze | Definizione                                                                                                                     | Simbolo<br>relativo alle<br>tolleranze | Definizione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | Diametro foro                                                                                                                   |                                        | Larghezza                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| d                                      | Diametro nominale foro                                                                                                          | В, С                                   | Larghezza nominale rispettiva degli anelli interno ed esterno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| d <sub>s</sub>                         | Diametro singolo foro                                                                                                           | B <sub>s</sub> , C <sub>s</sub>        | Larghezza rispettiva dei singoli anelli interno ed esterno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| d <sub>mp</sub>                        | Diametro medio foro; media aritmetica tra i diametri foro singoli maggiore e minore su un piano                                 | B <sub>1s</sub> , C <sub>1s</sub>      | Larghezza rispettiva dei singoli anelli interno ed esterno dun cuscinetto appartenente ad un gruppo appaiato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\Delta_{ds}$                          | Scostamento di un diametro foro singolo da quello nominale ( $\Delta_{ds}$ = $d_s$ – $d$ )                                      | $\Delta_{Bs},\Delta_{Cs}$              | Scostamento della larghezza di un singolo anello interno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\Delta_{ m dmp}$                      | Scostamento del diametro medio foro da quello nominale $(\Delta_{dmp} = d_{mp} - d)$                                            |                                        | di un singolo anello esterno da quella nominale $ (\Delta_{Bs} = B_s - B; \Delta_{Cs} = C_s - C) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $V_{ m dp}$                            | Variazione del diametro foro; differenza tra i diametri foro singoli maggiore e minore su un piano                              | $\Delta_{B1s},\Delta_{C1s}$            | Scostamento della larghezza di un singolo anello interno di un singolo anello esterno di un cuscinetto appartenent ad un gruppo appaiato da quella nominale (non si applica ai cuscinetti per montaggio universale)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $V_{ m dmp}$                           | Variazione del diametro medio foro; differenza tra i<br>diametri foro medi maggiore e minore                                    |                                        | $(\Delta_{B1s} = B_{1s} - B; \Delta_{C1s} = C_{1s} - C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |                                                                                                                                 | $V_{Bs}$ , $V_{Cs}$                    | Variazione della larghezza dell'anello; differenza tra le<br>larghezze singole maggiori e minori rispettive degli anelli<br>interno ed esterno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                        | Diametro esterno                                                                                                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D                                      | Diametro esterno nominale                                                                                                       |                                        | But the state of t |
| D <sub>s</sub>                         | Diametro esterno singolo                                                                                                        |                                        | Precisione di rotazione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| D <sub>mp</sub>                        | Diametro medio esterno; media aritmetica tra i diametri esterni singoli maggiore e minore su un piano                           | K <sub>ia</sub> , K <sub>ea</sub>      | Oscillazione radiale rispettiva degli anelli interno ed esterno di un cuscinetto dopo il montaggio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\Delta_{Ds}$                          | Scostamento di un diametro esterno singolo da quello                                                                            | $S_d$                                  | Oscillazione della faccia laterale rispetto al foro (dell'anell interno) $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\Delta_{Dmp}$                         | nominale ( $\Delta_{Ds} = D_s - D$ )  Scostamento del diametro esterno medio da quello nominale ( $\Delta_{Dmp} = D_{mp} - D$ ) | S <sub>D</sub>                         | Variazione dell'inclinazione esterna; variazione<br>dell'inclinazione della superficie cilindrica esterna rispetto<br>alla faccia laterale dell'anello esterno                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $V_{\mathrm{Dp}}$                      | Variazione del diametro esterno; differenza tra i diametri esterni singoli maggiore e minore su un piano                        | $S_{ia}, S_{ea}$                       | Oscillazione assiale rispettiva degli anelli interno ed esterno di un cuscinetto dopo il montaggio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $V_{Dmp}$                              | Variazione del diametro esterno medio; differenza tra i                                                                         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Precarico assiale di cuscinetti per montaggio universale e coppie di cuscinetti appaiati prima del montaggio, in disposizione ad "O" oppure a "X"



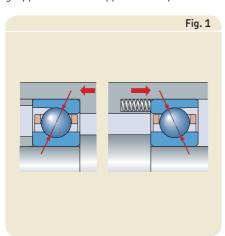


|                          | - Dimen              | Precar<br>- dei cus          | <b>ico assia</b><br>cinetti de |                                  | 1)             |                |                     |                |                  |                 |                    |                |                                  |                  |                      |                  |                                      |
|--------------------------|----------------------|------------------------------|--------------------------------|----------------------------------|----------------|----------------|---------------------|----------------|------------------|-----------------|--------------------|----------------|----------------------------------|------------------|----------------------|------------------|--------------------------------------|
| tro<br>estern            | sioni<br>o           |                              | ) (SEB 1)<br>)/HC (SE          | )<br>B /NS 1)                    |                |                | D (SEB 3<br>D/HC (S |                | ·)               | 70 CD<br>70 CD/ | (EX 1)<br>HC (EX / | NS 1)          |                                  | 70 ACE           | ) (EX 3)<br>)/HC (EX | /NS 3)           |                                      |
| d                        |                      | per clas<br>A                | sse di pre<br>B                | ecarico C                        | D              | per clas       | sse di pre<br>B     | ecarico<br>C   | D                | per clas        | sse di pre<br>B    | ecarico<br>C   | D                                | per clas         | sse di pre<br>B      | ecarico<br>C     | D                                    |
| mm                       | _                    | N                            |                                |                                  |                |                |                     |                |                  |                 |                    |                |                                  |                  |                      |                  |                                      |
| 6                        | 6                    | -                            | -                              | -                                | -              | -              | -                   | -              | -                | 7               | 13                 | 25             | 50                               | 12               | 25                   | 50               | 100                                  |
| 7                        | 7                    | -                            | -                              | -                                | -              | -              | -                   | -              | -                | 9               | 18                 | 35             | 70                               | 15               | 30                   | 60               | 120                                  |
| 8                        | 8                    | -                            | -                              | -                                | -              | -              | -                   | -              | -                | 11              | 22                 | 45             | 90                               | 20               | 40                   | 80               | 160                                  |
| 9                        | 9                    | -                            | -                              | -                                | -              | -              | -                   | -              | -                | 12              | 25                 | 50             | 100                              | 22               | 45                   | 90               | 180                                  |
| 10                       | 00                   | 10                           | 20                             | 40                               | 80             | 15             | 30                  | 60             | 120              | 15              | 30                 | 60             | 120                              | 25               | 50                   | 100              | 200                                  |
| 12                       | 01                   | 10                           | 20                             | 40                               | 80             | 15             | 30                  | 60             | 120              | 15              | 30                 | 60             | 120                              | 25               | 50                   | 100              | 200                                  |
| 15                       | 02                   | 15                           | 30                             | 60                               | 120            | 25             | 50                  | 100            | 200              | 20              | 40                 | 80             | 160                              | 30               | 60                   | 120              | 240                                  |
| 17                       | 03                   | 15                           | 30                             | 60                               | 120            | 25             | 50                  | 100            | 200              | 25              | 50                 | 100            | 200                              | 40               | 80                   | 160              | 320                                  |
| 20                       | 04                   | 25                           | 50                             | 100                              | 200            | 35             | 70                  | 140            | 280              | 35              | 70                 | 140            | 280                              | 50               | 100                  | 200              | 400                                  |
| 25                       | 05                   | 25                           | 50                             | 100                              | 200            | 40             | 80                  | 160            | 320              | 35              | 70                 | 140            | 280                              | 60               | 120                  | 240              | 480                                  |
| 30                       | 06                   | 25                           | 50                             | 100                              | 200            | 40             | 80                  | 160            | 320              | 50              | 100                | 200            | 400                              | 90               | 180                  | 360              | 720                                  |
| 35                       | 07                   | 35                           | 70                             | 140                              | 280            | 60             | 120                 | 240            | 480              | 60              | 120                | 240            | 480                              | 90               | 180                  | 360              | 720                                  |
| 40                       | 08                   | 45                           | 90                             | 180                              | 360            | 70             | 140                 | 280            | 560              | 60              | 120                | 240            | 480                              | 100              | 200                  | 400              | 800                                  |
| 45                       | 09                   | 50                           | 100                            | 200                              | 400            | 80             | 160                 | 320            | 640              | 110             | 220                | 440            | 880                              | 170              | 340                  | 680              | 1 360                                |
| 50                       | 10                   | 50                           | 100                            | 200                              | 400            | 80             | 160                 | 320            | 640              | 110             | 220                | 440            | 880                              | 180              | 360                  | 720              | 1 440                                |
| 55                       | 11                   | 70                           | 140                            | 280                              | 560            | 120            | 240                 | 480            | 960              | 150             | 300                | 600            | 1 200                            | 230              | 460                  | 920              | 1 840                                |
| 60                       | 12                   | 70                           | 140                            | 280                              | 560            | 120            | 240                 | 480            | 960              | 150             | 300                | 600            | 1 200                            | 240              | 480                  | 960              | 1 920                                |
| 65                       | 13                   | 80                           | 160                            | 320                              | 640            | 120            | 240                 | 480            | 960              | 160             | 320                | 640            | 1 280                            | 240              | 480                  | 960              | 1 920                                |
| 70                       | 14                   | 130                          | 260                            | 520                              | 1 040          | 200            | 400                 | 800            | 1 600            | 200             | 400                | 800            | 1 600                            | 300              | 600                  | 1 200            | 2 400                                |
| 75                       | 15                   | 130                          | 260                            | 520                              | 1 040          | 210            | 420                 | 840            | 1 680            | 200             | 400                | 800            | 1 600                            | 310              | 620                  | 1 240            | 2 480                                |
| 80                       | 16                   | 140                          | 280                            | 560                              | 1 120          | 220            | 440                 | 880            | 1 760            | 240             | 480                | 960            | 1 920                            | 390              | 780                  | 1 560            | 3 120                                |
| 85                       | 17                   | 170                          | 340                            | 680                              | 1 360          | 270            | 540                 | 1 080          | 2 160            | 250             | 500                | 1 000          | 2 000                            | 400              | 800                  | 1 600            | 3 200                                |
| 90                       | 18                   | 180                          | 360                            | 720                              | 1 440          | 280            | 560                 | 1 120          | 2 240            | 300             | 600                | 1 200          | 2 400                            | 460              | 920                  | 1 840            | 3 680                                |
| 95                       | 19                   | 190                          | 380                            | 760                              | 1 520          | 290            | 580                 | 1 160          | 2 320            | 310             | 620                | 1 240          | 2 480                            | 480              | 960                  | 1 920            | 3 840                                |
| 100                      | 20                   | 230                          | 460                            | 920                              | 1840           | 360            | 720                 | 1 440          | 2 880            | 310             | 620                | 1 240          | 2 480                            | 500              | 1 000                | 2 000            | 4 000                                |
| 105                      | 21                   | 230                          | 460                            | 920                              | 1840           | 360            | 720                 | 1 440          | 2 880            | 360             | 720                | 1 440          | 2 880                            | 560              | 1 120                | 2 240            | 4 480                                |
| 110                      | 22                   | 230                          | 460                            | 920                              | 1840           | 370            | 740                 | 1 480          | 2 960            | 420             | 840                | 1 680          | 3 360                            | 650              | 1 300                | 2 600            | 5 200                                |
| 120                      | 24                   | 290                          | 580                            | 1160                             | 2320           | 450            | 900                 | 1 800          | 3 600            | 430             | 860                | 1 720          | 3 440                            | 690              | 1 380                | 2 760            | 5 520                                |
| 130                      | 26                   | 350                          | 700                            | 1 400                            | 2 800          | 540            | 1 080               | 2 160          | 4 320            | 560             | 1 120              | 2 240          | 4 480                            | 900              | 1 800                | 3 600            | 7 200                                |
| 140                      | 28                   | 360                          | 720                            | 1 440                            | 2 880          | 560            | 1 120               | 2 240          | 4 480            | 570             | 1 140              | 2 280          | 4 560                            | 900              | 1 800                | 3 600            | 7 200                                |
| 150                      | 30                   | 470                          | 940                            | 1 880                            | 3 760          | 740            | 1 480               | 2 960          | 5 920            | 650             | 1 300              | 2 600          | 5 200                            | 1 000            | 2 000                | 4 000            | 8 000                                |
| 160                      | 32                   | 490                          | 980                            | 1 960                            | 3 920          | 800            | 1 600               | 3 200          | 6 400            | 730             | 1 460              | 2 920          | 5 840                            | 1 150            | 2 300                | 4 600            | 9 200                                |
| 170<br>180<br>190<br>200 | 34<br>36<br>38<br>40 | 500<br>630<br>640<br>800     | 1 260<br>1 280                 | 2 560                            | 5 040<br>5 120 | 1 000<br>1 000 | 2 000<br>2 000      | 4 000<br>4 000 | 8 000            | 900<br>950      | 1 800<br>1 900     | 3 600<br>3 800 | 6 400<br>7 200<br>7 600<br>8 800 | 1 450<br>1 450   | 2 900<br>2 900       | 5 800<br>5 800   | 10 000<br>11 600<br>11 600<br>14 000 |
| 220<br>240<br>260<br>280 | 44<br>48<br>52<br>56 | 850<br>860<br>1 050<br>1 090 | 1 720<br>2 100                 | 3 400<br>3 440<br>4 200<br>4 360 | 6 880<br>8 400 | 1 350<br>1 650 | 2 700<br>3 300      | 5 400<br>6 600 | 10 800<br>13 200 | 1300            |                    |                | 10 000<br>10 400<br>-<br>-       |                  |                      |                  | 16 000<br>16 400<br>-<br>-           |
| 300<br>320<br>340<br>360 | 60<br>64<br>68<br>72 | 1 400<br>1 460               |                                | 5 600<br>5 600<br>5 840<br>5 840 |                | 2 200          | 4 400<br>4 600      | 8 800<br>9 200 | 18 400           | ) —<br>) —      | -<br>-<br>-        | -<br>-<br>-    | -<br>-<br>-<br>-                 | -<br>-<br>-<br>- | -<br>-<br>-<br>-     | -<br>-<br>-<br>- | -<br>-<br>-                          |
| <sup>1)</sup> Dati va    | alidi anche p        | er i cuscinet                | ti schermat                    | i.                               |                |                |                     |                |                  |                 |                    |                |                                  |                  |                      |                  |                                      |

**SKF** 

Possono essere necessari accoppiamenti molto più vincolanti, ad esempio nel caso dei mandrini ad altissima velocità, in cui le forze centrifughe possono allentare l'anello interno nella sua sede sull'albero. Queste disposizioni di cuscinetti devono essere analizzate molto attentamente.

modo tale che, se montati idoneamente, si ottiene lo spostamento assiale predeterminato e, di conseguenza, il precarico più idoneo. Nel caso dei cuscinetti singoli, si devono utilizzare distanziali accoppiati di precisione.


#### Precarico con forza costante

Nelle applicazioni di precisione a velocità elevate è importante garantire un precarico costante e uniforme. Per mantenere il giusto precarico, si possono montare molle lineari calibrate tra un anello esterno del cuscinetto e lo spallamento dell'alloggiamento (→ fig. 1). Grazie alle molle, il comportamento cinematico del cuscinetto non influirà sul precarico in condizioni normali di esercizio. Si ricorda, tuttavia, che una disposizione di cuscinetti caricata mediante molla presenta un grado di rigidezza minore rispetto ad una disposizione che sfrutta lo spostamento assiale per ottenere il precarico.

# Precarico mediante spostamento assiale

La rigidezza e la guida assiale di precisione sono parametri critici nelle disposizioni di cuscinetti, soprattutto in presenza di forze assiali alternate. In questi casi il precarico nei cuscinetti si ottiene, solitamente, registrando reciprocamente gli anelli del cuscinetto in direzione assiale. Questo metodo per ottenere il precarico offre vantaggi significativi in termini di rigidezza di sistema. Tuttavia, in base alla serie dei cuscinetti, all'angolo di contatto e al materiale delle sfere, il precarico aumenta considerevolmente con la velocità rotazionale.

I cuscinetti per montaggio universale e i gruppi di cuscinetti appaiati sono prodotti in



|                                                               |                                         |                                                                     | Tabella 5                    |
|---------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------|------------------------------|
| Fattore f del cuscinet                                        | to per calcolare il preca               | rico in gruppi di cuscine                                           | tti dopo il montaggio        |
| <b>Cuscinetto</b> Diametro foro d                             | Dimensioni                              | Fattore f del cuscinett<br>per cuscinetti della seri<br>719 D (SEB) |                              |
| mm                                                            | _                                       | -                                                                   | _                            |
| 6<br>7<br>8<br>9                                              | 6<br>7<br>8<br>9                        | -<br>-<br>-                                                         | 1,01<br>1,02<br>1,02<br>1,03 |
| 10                                                            | 00                                      | 1,03                                                                | 1,03                         |
| 12                                                            | 01                                      | 1,04                                                                | 1,03                         |
| 15                                                            | 02                                      | 1,05                                                                | 1,03                         |
| 17                                                            | 03                                      | 1,05                                                                | 1,04                         |
| 20                                                            | 04                                      | 1,05                                                                | 1,03                         |
| 25                                                            | 05                                      | 1,07                                                                | 1,05                         |
| 30                                                            | 06                                      | 1,08                                                                | 1,06                         |
| 35                                                            | 07                                      | 1,1                                                                 | 1,06                         |
| 40                                                            | 08                                      | 1,09                                                                | 1,06                         |
| 45                                                            | 09                                      | 1,11                                                                | 1,09                         |
| 50                                                            | 10                                      | 1,13                                                                | 1,11                         |
| 55                                                            | 11                                      | 1,15                                                                | 1,1                          |
| 60                                                            | 12                                      | 1,17                                                                | 1,12                         |
| 65                                                            | 13                                      | 1,2                                                                 | 1,13                         |
| 70                                                            | 14                                      | 1,19                                                                | 1,12                         |
| 75                                                            | 15                                      | 1,21                                                                | 1,14                         |
| 80                                                            | 16                                      | 1,24                                                                | 1,13                         |
| 85                                                            | 17                                      | 1,2                                                                 | 1,15                         |
| 90                                                            | 18                                      | 1,23                                                                | 1,14                         |
| 95                                                            | 19                                      | 1,26                                                                | 1,15                         |
| 100                                                           | 20                                      | 1,23                                                                | 1,16                         |
| 105                                                           | 21                                      | 1,25                                                                | 1,15                         |
| 110                                                           | 22                                      | 1,26                                                                | 1,14                         |
| 120                                                           | 24                                      | 1,26                                                                | 1,17                         |
| 130                                                           | 26                                      | 1,25                                                                | 1,15                         |
| 140                                                           | 28                                      | 1,29                                                                | 1,16                         |
| 150                                                           | 30                                      | 1,24                                                                | 1,16                         |
| 160                                                           | 32                                      | 1,27                                                                | 1,16                         |
| 170                                                           | 34                                      | 1,3                                                                 | 1,14                         |
| 180                                                           | 36                                      | 1,25                                                                | 1,13                         |
| 190                                                           | 38                                      | 1,27                                                                | 1,14                         |
| 200                                                           | 40                                      | 1,23                                                                | 1,14                         |
| 220<br>240<br>260<br>280                                      | 44<br>48<br>52<br>56                    | 1,28<br>1,32<br>1,24<br>1,27                                        | 1,13<br>1,15<br>-            |
| 300<br>320<br>340<br>360<br>1) Dati validi anche per i cuscin | 60<br>64<br>68<br>72<br>etti schermati. | 1,22<br>1,24<br>1,27<br>1,29                                        | =                            |

## Regolazione del precarico mediante distanziali

Il precarico può essere aumentato o diminuito inserendo tra i cuscinetti distanziali accoppiati di precisione. Questi distanziali possono anche essere utilizzati per:

- aumentare la rigidezza del sistema
- creare un serbatoio di riserva del grasso sufficientemente ampio tra due cuscinetti
- creare uno spazio per gli ugelli per la lubrificazione olio-aria

Il precarico in un gruppo di cuscinetti può essere regolato rettificando la faccia laterale del distanziale interno o esterno. Nella **tabella 7** sono riportate informazioni in merito a quale delle facce del distanziale

debba essere rettificata e agli effetti di tale operazione. I valori di riferimento per la riduzione necessaria della lunghezza totale dei distanziali sono elencati nella **tabella 8** a **pagina 24**.

Per ottenere le migliori prestazioni dei cuscinetti, i distanziali non devono subire deformazioni sotto carico. Devono essere realizzati in acciaio di alta qualità, che possa essere temprato per ottenere una durezza da 45 a 60 HRC. Si deve prestare particolare attenzione al parallelismo delle superfici della faccia laterale, per cui lo scostamento massimo ammissibile di forma non deve superare i 2 µm.

# Influenza della velocità rotazionale sul precarico

Utilizzando degli estensimetri, la SKF ha potuto stabilire che, a velocità molto elevate, si verifica un notevole aumento del precarico. Ciò è dovuto principalmente alle potenti forze centrifughe che agiscono sulle sfere, causando lo spostamento delle stesse all'interno del cuscinetto. Se paragonati ai cuscinetti con sfere in acciaio, quelli ibridi possono raggiungere velocità rotazionali molto più elevate senza che si verifichi alcun aumento significativo del precarico, poiché la massa delle loro sfere è minore.

# Rigidezza assiale del cuscinetto

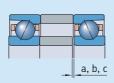
La rigidezza assiale dipende dalla deformazione del cuscinetto sotto carico e può essere espressa come il rapporto tra il carico e la resilienza del cuscinetto. Tuttavia, dato che la relazione tra resilienza e carico non è lineare, si possono fornire solo valori indicativi (→ tabella 9, pagina 25). Questi valori sono validi per coppie di cuscinetti dopo il montaggio, in condizioni statiche e soggette a carichi moderati.

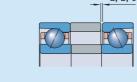
Si possono calcolare valori esatti avvalendosi di metodi informatici avanzati. Per ulteriori informazioni, rivolgersi all'Ingegneria dell'applicazione della SKF.

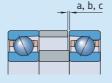
I gruppi composti da tre o quattro cuscinetti possono garantire un grado maggiore di rigidezza assiale rispetto ai gruppi con due cuscinetti. La rigidezza assiale per questi gruppi può essere calcolata moltiplicando i valori riportati nella **tabella 9** a **pagina 25** per un fattore che dipende dalla disposizione di cuscinetti:

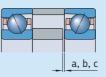
- 1,45 per disposizioni TBT (*TD*) e TFT (*TF*)
- 1,8 per disposizioni QBT (3TD) e QFT (3TF)

Tabella 7


• 2 per disposizioni QBC (TDT) e QFC (TFT)


Nel caso dei cuscinetti ibridi, la rigidezza assiale può essere calcolata con lo stesso metodo applicato per i cuscinetti con sfere in acciaio. I valori calcolati dovranno tuttavia essere successivamente moltiplicati per un fattore pari a 1,11 (per tutte le disposizioni e le classi di precarico).


| Fattori di correzione per calcolare il preca<br>Serie dei cuscinetti <sup>1)</sup>   |                        | •                       | uscinetti (<br>rezione       | dopo il n | nontagg      | io                |
|--------------------------------------------------------------------------------------|------------------------|-------------------------|------------------------------|-----------|--------------|-------------------|
| Serie del cuscinecti                                                                 | f <sub>1</sub>         | f <sub>2</sub><br>per c | lasse di pr                  |           |              | f <sub>HC</sub>   |
|                                                                                      |                        | Α                       | B                            | С         | D            |                   |
| 719 CD (SEB 1)<br>719 ACD (SEB 3)<br>719 CD/HC (SEB /NS 1)<br>719 ACD/HC (SEB /NS 3) | 1<br>0,98<br>1<br>0,98 | 1<br>1<br>1             | 1,04<br>1,04<br>1,07<br>1,07 | 1,12      | 1,14<br>1,18 | 1<br>1,04<br>1,04 |
| 70 CD (EX 1)<br>70 ACD (EX 3)<br>70 CD/HC (EX /NS 1)<br>70 ACD/HC (EX /NS 3)         | 1<br>0,99<br>1<br>0,99 | 1<br>1<br>1             | 1,02<br>1,02<br>1,02<br>1,02 |           |              | 1<br>1,02<br>1,02 |
|                                                                                      |                        |                         |                              |           |              |                   |


|                                                 |                              |                                   | rabella /        |
|-------------------------------------------------|------------------------------|-----------------------------------|------------------|
| Linee guida per la modifica dei distar          | nziali                       |                                   |                  |
| Cambio del precarico di un gruppo di cuscinetti | Riduzione della<br>lunghezza | Distanziale richiesto             | ,                |
|                                                 | Valore                       | tra cuscinetti in dispo<br>ad "O" | sizione<br>a "X" |
| Aumento del precarico                           |                              |                                   |                  |
| da A a B                                        | a                            | interno                           | esterno          |
| da B a C                                        | b                            | interno                           | esterno          |
| da C a D                                        | C                            | interno                           | esterno          |
| da A a C                                        | a + b                        | interno                           | esterno          |
| da A a D                                        | a + b + c                    | interno                           | esterno          |
| Riduzione del precarico                         |                              |                                   |                  |
| da B ad A                                       | a                            | esterno                           | interno          |
| da C a B                                        | b                            | esterno                           | interno          |
| da D a C                                        | С                            | esterno                           | interno          |
| da C ad A                                       | a + b                        | esterno                           | interno          |
| da D a A                                        | a + b + c                    | esterno                           | interno          |
|                                                 |                              |                                   |                  |

#### Valori di riferimento per la riduzione della lunghezza del distanziale









Aumento del precarico (disposizione ad "0")

Riduzione del precarico

Aumento del precarico (Disposizione a "X")

Riduzione del precarico (Disposizione a "X")

| (                                 | disposizione ad "0")       |                      | (disposizio                                         | one ad "C                                        | )")                  | (Dis <sub>l</sub>                      | posizion             | e a "X")             |                      | (Dispo               | sizione a            | "X")                   |                      |
|-----------------------------------|----------------------------|----------------------|-----------------------------------------------------|--------------------------------------------------|----------------------|----------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|------------------------|----------------------|
| <b>Cuscinetto</b> Diametro foro   | Dimensioni                 | per cu               | i <b>one neces</b><br>scinetti de<br>D (SEB 1)<br>b | <b>ssaria de</b><br>lle serie <sup>1)</sup><br>c |                      | h <b>ezza del c</b><br>CD (SEB 3)<br>b |                      |                      | (EX 1)<br>b          | С                    | 70 AC                | CD ( <i>EX</i> 3)<br>b | С                    |
| mm                                | _                          | <br>μm               | В                                                   |                                                  | а<br>                |                                        |                      | a                    |                      |                      | a                    | D                      |                      |
| 6<br>7<br>8<br>9                  | 6<br>7<br>8<br>9           | -<br>-<br>-<br>-     | -<br>-<br>-<br>-                                    | -<br>-<br>-<br>-                                 | _<br>_<br>_<br>_     | -<br>-<br>-<br>-                       | -<br>-<br>-<br>-     | 3<br>4<br>4<br>4     | 4<br>5<br>6<br>6     | 7<br>8<br>8<br>8     | 2<br>2<br>3<br>3     | 4<br>4<br>4<br>4       | 5<br>6<br>6<br>6     |
| 10<br>12<br>15<br>17              | 00<br>01<br>02<br>03       | 3<br>3<br>4<br>4     | 4<br>4<br>5<br>5                                    | 6<br>6<br>8<br>8                                 | 2<br>2<br>2<br>2     | 3<br>3<br>4<br>4                       | 5<br>5<br>6<br>6     | 4<br>4<br>4<br>5     | 6<br>6<br>6<br>7     | 9<br>9<br>9<br>10    | 3<br>3<br>3<br>3     | 4<br>4<br>4<br>5       | 7<br>7<br>7<br>7     |
| 20<br>25<br>30<br>35              | 04<br>05<br>06<br>07       | 4<br>4<br>4<br>4     | 6<br>6<br>6<br>7                                    | 9<br>9<br>9<br>10                                | 3<br>3<br>3<br>3     | 4<br>4<br>4<br>5                       | 6<br>6<br>6<br>7     | 6<br>6<br>6<br>6     | 8<br>8<br>9<br>10    | 12<br>12<br>14<br>14 | 3<br>3<br>4<br>4     | 5<br>5<br>7<br>7       | 8<br>8<br>10<br>10   |
| 40<br>45<br>50<br>55              | 08<br>09<br>10<br>11       | 5<br>5<br>5<br>6     | 7<br>8<br>8<br>9                                    | 11<br>11<br>11<br>14                             | 3<br>3<br>3<br>4     | 5<br>5<br>5<br>7                       | 8<br>8<br>8<br>10    | 6<br>8<br>8<br>9     | 10<br>11<br>11<br>13 | 14<br>16<br>16<br>19 | 4<br>5<br>5<br>6     | 7<br>8<br>8<br>9       | 10<br>12<br>12<br>14 |
| 60<br>65<br>70<br>75              | 12<br>13<br>14<br>15       | 6<br>6<br>7<br>7     | 9<br>10<br>11<br>11                                 | 14<br>15<br>16<br>16                             | 4<br>4<br>5<br>5     | 7<br>7<br>8<br>8                       | 10<br>10<br>12<br>12 | 9<br>9<br>10<br>10   | 13<br>13<br>15<br>15 | 19<br>19<br>22<br>22 | 6<br>6<br>6          | 9<br>9<br>10<br>10     | 14<br>14<br>16<br>16 |
| 80<br>85<br>90<br>95              | 16<br>17<br>18<br>19       | 7<br>8<br>9          | 11<br>13<br>13<br>13                                | 17<br>19<br>19<br>20                             | 5<br>6<br>6          | 8<br>9<br>9                            | 12<br>14<br>14<br>14 | 11<br>11<br>12<br>12 | 16<br>16<br>18<br>18 | 23<br>24<br>26<br>26 | 7<br>7<br>8<br>8     | 11<br>11<br>12<br>12   | 17<br>17<br>19<br>19 |
| 100<br>105<br>110<br>120          | 20<br>21<br>22<br>24       | 10<br>10<br>10<br>11 | 15<br>15<br>15<br>16                                | 22<br>22<br>22<br>24                             | 6<br>6<br>6<br>7     | 10<br>10<br>10<br>11                   | 16<br>16<br>16<br>18 | 12<br>13<br>14<br>14 | 18<br>19<br>21<br>21 | 26<br>29<br>31<br>31 | 8<br>8<br>9<br>9     | 12<br>13<br>15<br>15   | 19<br>21<br>23<br>23 |
| 130<br>140<br>150<br>160          | 26<br>28<br>30<br>32       | 12<br>12<br>14<br>14 | 18<br>18<br>21<br>22                                | 27<br>27<br>32<br>32                             | 8<br>8<br>9          | 12<br>12<br>15<br>15                   | 19<br>20<br>23<br>24 | 16<br>16<br>17<br>18 | 24<br>24<br>26<br>27 | 35<br>36<br>38<br>40 | 11<br>11<br>11<br>12 | 17<br>17<br>17<br>19   | 26<br>26<br>27<br>29 |
| 170<br>180<br>190<br>200          | 34<br>36<br>38<br>40       | 14<br>16<br>16<br>18 | 22<br>24<br>25<br>28                                | 33<br>36<br>37<br>41                             | 9<br>10<br>10<br>12  | 15<br>17<br>17<br>19                   | 24<br>27<br>27<br>30 | 18<br>20<br>20<br>22 | 28<br>30<br>30<br>33 | 41<br>44<br>45<br>49 | 12<br>13<br>13<br>14 | 19<br>20<br>20<br>22   | 29<br>32<br>32<br>35 |
| 220<br>240<br>260<br>280          | 44<br>48<br>52<br>56       | 18<br>18<br>19<br>19 | 28<br>28<br>30<br>30                                | 42<br>42<br>45<br>45                             | 12<br>12<br>13<br>13 | 19<br>20<br>21<br>21                   | 30<br>31<br>33<br>34 | 23<br>23<br>-<br>-   | 35<br>35<br>-<br>-   | 52<br>53<br>-<br>-   | 15<br>15<br>-<br>-   | 24<br>24<br>-<br>-     | 37<br>38<br>-<br>-   |
| 300<br>320<br>340<br>360          | 60<br>64<br>68<br>72       | 23<br>23<br>23<br>23 | 36<br>36<br>36<br>36                                | 54<br>54<br>54<br>54                             | 15<br>15<br>15<br>15 | 24<br>24<br>24<br>24                   | 38<br>38<br>39<br>39 | -<br>-<br>-          | -<br>-<br>-          | -<br>-<br>-<br>-     | -<br>-<br>-          | -<br>-<br>-            | -<br>-<br>-<br>-     |
| <sup>1)</sup> Dati validi anche p | er i cuscinetti schermati. |                      |                                                     |                                                  |                      |                                        |                      |                      |                      |                      |                      |                        |                      |

#### Rigidezza assiale statica per coppie di cuscinetti in disposizione ad "O" oppure a "X"





| <b>Cuscinetto</b> Diametro for | o Dimensioni            | Rigidezza assiale statica<br>di cuscinetti con sfere in accia<br>719 CD (SEB 1)<br>per classe di precarico<br>A B C D |                          |                          |                          | 719 A                    | 719 ACD (SEB 3)<br>per classe di precarico |                          |                                  | 70 CD (EX 1) per classe di precarico A B C D |                          |                          | 70 ACD (EX 3) per classe di precarico A B C D |                          |                          |                          |                                  |
|--------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------------------------|--------------------------|----------------------------------|----------------------------------------------|--------------------------|--------------------------|-----------------------------------------------|--------------------------|--------------------------|--------------------------|----------------------------------|
| mm                             | -                       | N/µm                                                                                                                  | 1                        |                          |                          |                          |                                            |                          |                                  |                                              |                          |                          |                                               |                          |                          |                          |                                  |
| 6<br>7<br>8<br>9               | 6<br>7<br>8<br>9        | -<br>-<br>-                                                                                                           | _<br>_<br>_<br>_         | -<br>-<br>-<br>-         | -<br>-<br>-              | _<br>_<br>_<br>_         | _<br>_<br>_<br>_                           | -<br>-<br>-              | _<br>_<br>_<br>_                 | 8<br>9<br>10<br>11                           | 10<br>12<br>14<br>15     | 13<br>16<br>19<br>21     | 18<br>22<br>26<br>29                          | 19<br>22<br>27<br>30     | 26<br>28<br>35<br>39     | 33<br>37<br>45<br>51     | 44<br>49<br>60<br>67             |
| 10                             | 00                      | 12                                                                                                                    | 16                       | 22                       | 32                       | 29                       | 38                                         | 49                       | 65                               | 13                                           | 17                       | 23                       | 33                                            | 32                       | 41                       | 54                       | 71                               |
| 12                             | 01                      | 13                                                                                                                    | 17                       | 23                       | 33                       | 31                       | 39                                         | 52                       | 69                               | 14                                           | 18                       | 25                       | 35                                            | 34                       | 44                       | 57                       | 76                               |
| 15                             | 02                      | 16                                                                                                                    | 21                       | 29                       | 41                       | 40                       | 51                                         | 67                       | 88                               | 17                                           | 23                       | 31                       | 44                                            | 41                       | 53                       | 69                       | 92                               |
| 17                             | 03                      | 16                                                                                                                    | 22                       | 30                       | 43                       | 42                       | 54                                         | 70                       | 93                               | 19                                           | 26                       | 35                       | 50                                            | 48                       | 62                       | 81                       | 107                              |
| 20                             | 04                      | 22                                                                                                                    | 29                       | 40                       | 56                       | 51                       | 65                                         | 85                       | 113                              | 23                                           | 30                       | 42                       | 59                                            | 54                       | 69                       | 90                       | 120                              |
| 25                             | 05                      | 24                                                                                                                    | 32                       | 44                       | 62                       | 60                       | 78                                         | 101                      | 134                              | 25                                           | 33                       | 46                       | 64                                            | 64                       | 83                       | 108                      | 143                              |
| 30                             | 06                      | 26                                                                                                                    | 35                       | 47                       | 67                       | 65                       | 83                                         | 109                      | 145                              | 30                                           | 40                       | 55                       | 77                                            | 79                       | 102                      | 133                      | 176                              |
| 35                             | 07                      | 32                                                                                                                    | 42                       | 58                       | 82                       | 81                       | 105                                        | 137                      | 183                              | 36                                           | 47                       | 64                       | 90                                            | 86                       | 110                      | 144                      | 190                              |
| 40                             | 08                      | 36                                                                                                                    | 48                       | 66                       | 93                       | 89                       | 115                                        | 151                      | 199                              | 38                                           | 51                       | 69                       | 96                                            | 96                       | 124                      | 162                      | 214                              |
| 45                             | 09                      | 40                                                                                                                    | 53                       | 73                       | 103                      | 100                      | 129                                        | 168                      | 225                              | 56                                           | 76                       | 107                      | 155                                           | 132                      | 173                      | 229                      | 309                              |
| 50                             | 10                      | 43                                                                                                                    | 57                       | 78                       | 110                      | 105                      | 137                                        | 180                      | 240                              | 58                                           | 79                       | 111                      | 161                                           | 141                      | 184                      | 244                      | 331                              |
| 55                             | 11                      | 49                                                                                                                    | 65                       | 89                       | 126                      | 124                      | 161                                        | 211                      | 282                              | 67                                           | 91                       | 128                      | 186                                           | 159                      | 207                      | 275                      | 372                              |
| 60                             | 12                      | 50                                                                                                                    | 67                       | 92                       | 130                      | 128                      | 166                                        | 218                      | 292                              | 70                                           | 95                       | 133                      | 193                                           | 168                      | 219                      | 291                      | 393                              |
| 65                             | 13                      | 56                                                                                                                    | 75                       | 104                      | 148                      | 136                      | 176                                        | 232                      | 311                              | 74                                           | 101                      | 143                      | 207                                           | 174                      | 227                      | 302                      | 409                              |
| 70                             | 14                      | 76                                                                                                                    | 104                      | 147                      | 215                      | 180                      | 235                                        | 314                      | 428                              | 81                                           | 111                      | 156                      | 227                                           | 191                      | 249                      | 330                      | 447                              |
| 75                             | 15                      | 80                                                                                                                    | 110                      | 156                      | 228                      | 194                      | 255                                        | 340                      | 464                              | 84                                           | 115                      | 162                      | 235                                           | 200                      | 262                      | 347                      | 471                              |
| 80                             | 16                      | 85                                                                                                                    | 117                      | 167                      | 246                      | 204                      | 267                                        | 358                      | 490                              | 92                                           | 125                      | 175                      | 254                                           | 223                      | 291                      | 386                      | 523                              |
| 85                             | 17                      | 89                                                                                                                    | 122                      | 172                      | 251                      | 214                      | 281                                        | 374                      | 509                              | 97                                           | 132                      | 185                      | 268                                           | 233                      | 304                      | 405                      | 549                              |
| 90                             | 18                      | 94                                                                                                                    | 129                      | 183                      | 268                      | 224                      | 293                                        | 392                      | 536                              | 103                                          | 141                      | 198                      | 287                                           | 245                      | 321                      | 425                      | 575                              |
| 95                             | 19                      | 101                                                                                                                   | 139                      | 198                      | 291                      | 240                      | 315                                        | 420                      | 576                              | 108                                          | 148                      | 208                      | 302                                           | 258                      | 337                      | 448                      | 607                              |
| 100                            | 20                      | 107                                                                                                                   | 147                      | 209                      | 306                      | 255                      | 336                                        | 449                      | 613                              | 112                                          | 153                      | 215                      | 312                                           | 270                      | 355                      | 472                      | 640                              |
| 105                            | 21                      | 110                                                                                                                   | 151                      | 215                      | 316                      | 263                      | 346                                        | 463                      | 633                              | 117                                          | 159                      | 223                      | 324                                           | 279                      | 365                      | 484                      | 655                              |
| 110                            | 22                      | 113                                                                                                                   | 156                      | 221                      | 325                      | 274                      | 359                                        | 482                      | 661                              | 122                                          | 166                      | 232                      | 337                                           | 290                      | 379                      | 503                      | 681                              |
| 120                            | 24                      | 127                                                                                                                   | 174                      | 246                      | 361                      | 302                      | 396                                        | 529                      | 724                              | 131                                          | 179                      | 251                      | 364                                           | 318                      | 416                      | 552                      | 749                              |
| 130                            | 26                      | 137                                                                                                                   | 188                      | 266                      | 391                      | 325                      | 427                                        | 570                      | 780                              | 145                                          | 198                      | 277                      | 400                                           | 353                      | 460                      | 610                      | 826                              |
| 140                            | 28                      | 146                                                                                                                   | 201                      | 286                      | 420                      | 348                      | 457                                        | 614                      | 841                              | 151                                          | 206                      | 289                      | 418                                           | 364                      | 477                      | 633                      | 856                              |
| 150                            | 30                      | 154                                                                                                                   | 211                      | 297                      | 435                      | 370                      | 485                                        | 648                      | 882                              | 163                                          | 221                      | 310                      | 449                                           | 388                      | 506                      | 671                      | 909                              |
| 160                            | 32                      | 166                                                                                                                   | 227                      | 321                      | 471                      | 402                      | 530                                        | 710                      | 970                              | 171                                          | 233                      | 327                      | 472                                           | 414                      | 540                      | 717                      | 968                              |
| 170<br>180<br>190<br>200       | 34<br>36<br>38<br>40    | 171<br>183<br>189<br>202                                                                                              | 236<br>250<br>260<br>275 | 334<br>353<br>367<br>387 | 493<br>516<br>538<br>565 | 415<br>442<br>455<br>484 | 546<br>581<br>599<br>635                   | 731<br>774<br>798<br>845 | 1 002<br>1 055<br>1 090<br>1 148 | 186<br>196                                   | 243<br>251<br>266<br>280 | 339<br>349<br>370<br>389 | 488<br>501<br>532<br>556                      | 433<br>456<br>471<br>509 | 563<br>593<br>613<br>660 | 744<br>782<br>809<br>871 | 1 003<br>1 052<br>1 088<br>1 170 |
| 220<br>240<br>260<br>280       | 44<br>48<br>52<br>56    | 224<br>237<br>249<br>266                                                                                              | 306<br>325<br>339<br>363 | 434<br>461<br>475<br>509 | 635<br>678<br>688<br>741 | 533<br>584<br>616<br>659 | 699<br>767<br>807<br>867                   | 1 071                    | 1 275<br>1 412<br>1 455<br>1 572 | 234                                          | 300<br>316<br>-<br>-     | 415<br>438<br>-<br>-     | 592<br>627<br>-                               | 546<br>571<br>-<br>-     | 710<br>743<br>-<br>-     | 935<br>979<br>-<br>-     | 1 254<br>1 315<br>-              |
| 300<br>320<br>340<br>360       | 60<br>64<br>68<br>72    | 272<br>281<br>300<br>309                                                                                              | 369<br>380<br>408<br>420 | 514<br>530<br>571<br>588 | 741<br>765<br>827<br>853 | 663<br>683<br>739<br>754 | 866<br>892<br>967<br>987                   | 1 183<br>1 284           | 1 548<br>1 599<br>1 742<br>1 779 | _                                            | -<br>-<br>-<br>-         | -<br>-<br>-              | -<br>-<br>-<br>-                              | -<br>-<br>-              | -<br>-<br>-<br>-         | -<br>-<br>-<br>-         | -<br>-<br>-                      |
| <sup>1)</sup> Dati validi anch | e per i cuscinetti scho | ermati.                                                                                                               |                          |                          |                          |                          |                                            |                          |                                  |                                              |                          |                          |                                               |                          |                          |                          |                                  |

## Accoppiamento e serraggio degli anelli del cuscinetto

Di norma, i cuscinetti obliqui a sfere Superprecision vengono vincolati assialmente sugli alberi o negli alloggiamenti mediante ghiere di bloccaggio di precisione ( $\rightarrow$  fig. 2) o coperchi di estremità. Per garantire un bloccaggio affidabile, questi componenti richiedono un'elevata precisione geometrica e una buona resistenza meccanica.

La coppia di serraggio  $M_t$ , per le ghiere di bloccaggio di precisione o i bulloni dei coperchi di estremità, deve essere sufficiente a evitare movimenti relativi dei componenti adiacenti, a mantenere la posizione del cuscinetto senza che si verifichino deformazioni e a ridurre al minimo la fatica del materiale.

| <b>Cuscinetto</b> Diametro foro d | Dimensioni           |                                          | <b>i bloccaggio assiale</b><br>elle serie <sup>1)</sup><br>70 D ( <i>EX</i> ) | Forza di accopp<br>per cuscinetti de<br>719 D (SEB)<br>F <sub>c</sub> |                          |
|-----------------------------------|----------------------|------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------|
| mm                                | _                    | N                                        |                                                                               | N                                                                     |                          |
| 6<br>7<br>8<br>9                  | 6<br>7<br>8<br>9     | -<br>-<br>-<br>-                         | 260<br>310<br>450<br>600                                                      | -<br>-<br>-                                                           | 430<br>410<br>490<br>490 |
| 10                                | 00                   | 500                                      | 600                                                                           | 280                                                                   | 500                      |
| 12                                | 01                   | 600                                      | 700                                                                           | 280                                                                   | 470                      |
| 15                                | 02                   | 650                                      | 1 000                                                                         | 280                                                                   | 490                      |
| 17                                | 03                   | 750                                      | 1 000                                                                         | 280                                                                   | 490                      |
| 20                                | 04                   | 1 300                                    | 1 600                                                                         | 400                                                                   | 650                      |
| 25                                | 05                   | 1 600                                    | 2 000                                                                         | 340                                                                   | 550                      |
| 30                                | 06                   | 1 900                                    | 2 500                                                                         | 300                                                                   | 550                      |
| 35                                | 07                   | 2 600                                    | 3 300                                                                         | 440                                                                   | 750                      |
| 40                                | 08                   | 3 100                                    | 4 100                                                                         | 500                                                                   | 750                      |
| 45                                | 09                   | 3 800                                    | 4 500                                                                         | 480                                                                   | 750                      |
| 50                                | 10                   | 3 100                                    | 5 000                                                                         | 430                                                                   | 650                      |
| 55                                | 11                   | 4 100                                    | 6 000                                                                         | 430                                                                   | 800                      |
| 60                                | 12                   | 4 500                                    | 6 500                                                                         | 400                                                                   | 750                      |
| 65                                | 13                   | 4 800                                    | 7 000                                                                         | 370                                                                   | 700                      |
| 70                                | 14                   | 6 500                                    | 8 500                                                                         | 500                                                                   | 800                      |
| 75                                | 15                   | 6 500                                    | 9 000                                                                         | 480                                                                   | 750                      |
| 80                                | 16                   | 7 000                                    | 11 000                                                                        | 650                                                                   | 1 200                    |
| 85                                | 17                   | 9 000                                    | 11 000                                                                        | 900                                                                   | 1 400                    |
| 90                                | 18                   | 9 500                                    | 14 000                                                                        | 850                                                                   | 1 400                    |
| 95                                | 19                   | 10 000                                   | 14 000                                                                        | 850                                                                   | 1 500                    |
| 100                               | 20                   | 12 000                                   | 15 000                                                                        | 1 000                                                                 | 1 400                    |
| 105                               | 21                   | 12 500                                   | 17 000                                                                        | 900                                                                   | 1 600                    |
| 110                               | 22                   | 13 000                                   | 20 000                                                                        | 900                                                                   | 1 800                    |
| 120                               | 24                   | 16 000                                   | 22 000                                                                        | 1 200                                                                 | 1 900                    |
| 130                               | 26                   | 23 000                                   | 27 000                                                                        | 1 300                                                                 | 2 700                    |
| 140                               | 28                   | 24 000                                   | 29 000                                                                        | 1 300                                                                 | 2 500                    |
| 150                               | 30                   | 27 000                                   | 34 000                                                                        | 1 800                                                                 | 2 700                    |
| 160                               | 32                   | 28 000                                   | 38 000                                                                        | 1 700                                                                 | 2 900                    |
| 170                               | 34                   | 30 000                                   | 51 000                                                                        | 1 600                                                                 | 3 500                    |
| 180                               | 36                   | 37 000                                   | 59 000                                                                        | 2 200                                                                 | 4 000                    |
| 190                               | 38                   | 39 000                                   | 62 000                                                                        | 2 600                                                                 | 4 500                    |
| 200                               | 40                   | 48 000                                   | 66 000                                                                        | 3 200                                                                 | 5 500                    |
| 220                               | 44                   | 52 000                                   | 79 000                                                                        | 2 900                                                                 | 6 000                    |
| 240                               | 48                   | 57 000                                   | 86 000                                                                        | 2 700                                                                 | 5 500                    |
| 260                               | 52                   | 77 000                                   | -                                                                             | 4 000                                                                 | -                        |
| 280                               | 56                   | 83 000                                   | -                                                                             | 4 000                                                                 | -                        |
| 300<br>320<br>340<br>360          | 60<br>64<br>68<br>72 | 107 000<br>114 000<br>120 000<br>127 000 | -<br>-<br>-                                                                   | 5 300<br>5 700<br>6 000<br>6 200                                      | -<br>-<br>-<br>-         |
| 1) Dati validi and                | he per i cuscinetti  | schermati                                |                                                                               |                                                                       |                          |

Forza di serraggio assiale minima e forza di accoppiamento assiale per ghiere di bloccaggio

di precisione e coperchi di estremità

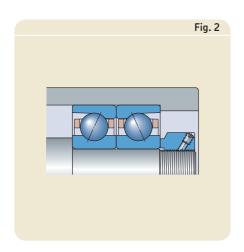



Tabella 10

#### Tabella 11 Fattore K per il calcolo della coppia di serraggio Fattore K Diametro per nominale filettatura<sup>1)</sup> ghiere di bulloni dei bloccaggio di coperchi di precisione estremità M 4 0,8 M 5 1 1.2 M 6 M 8 1,6 M 10 1,4 2 2,4 2,7 2,9 M 12 1,6 M 14 1,9 M 15 2,1 2,2 3,1 M 16 M 17 2,6 3,2 M 20 M 25 M 30 3,9 4,5 M 35 M 40 5,1 M 45 5,8 M 50 6,4 M 55 M 60 M 65 7,6 8.1 9 M 70 9.6 M 75 M 80 M 85 10 11 M 90 11 M 95 12 M 100 12 M 105 13 14 M 110 M 120 15 M 130 16 M 140 17 M 150 18 19 M 160 M 170 21 M 180 22 M 190 23 24 M 200 M 220 26 M 240 27 29 M 260 M 280 32 M 300 34 M 320 36 M 340 38 M 360 40

# Calcolo della coppia di serraggio M<sub>t</sub>

E' difficile calcolare in maniera precisa la coppia di serraggio  $M_t$  per le ghiere di bloccaggio e per i bulloni dei coperchi di estremità. Le formule seguenti possono essere utilizzate per effettuare i calcoli, ma i risultati dovranno essere verificati in esercizio.

La forza di serraggio assiale per una ghiera di bloccaggio di precisione o per i bulloni di un coperchio di estremità è data da

$$P_a = F_s + (N_{cp}F_c) + G_{A,B,C,D}$$

La coppia di serraggio per una ghiera di bloccaggio di precisione è data da

$$M_t = K P_a$$
  
=  $K [F_s + (N_{cp}F_c) + G_{A,B,C,D}]$ 

La coppia di serraggio per i bulloni di un coperchio di estremità è data da

$$M_t = \frac{K P_a}{N_b}$$

$$M_{t} = \frac{K \left[F_{s} + \left(N_{cp}F_{c}\right) + G_{A,B,C,D}\right]}{N_{b}}$$

dove

M<sub>t</sub> = coppia di serraggio [Nmm]

P<sub>a</sub> = forza di serraggio assiale [N]

F<sub>s</sub> = forza di serraggio assiale minima

 $(\rightarrow tabella 10) [N]$ 

 $F_c$  = forza di accoppiamento

assiale(→ tabella 10) [N]

G<sub>A,B,C,D</sub> = precarico del gruppo di cuscinetti prima del montaggio (→ tabella 4

a **pagina 21**) [N]

 $N_{cp}$  = numero di cuscinetti precaricati

 $N_b$  = numero di bulloni del coperchio di

estremità

K = un fattore di calcolo determinato dalla filettatura (→ tabella 11)

# Capacità di carico dei gruppi di cuscinetti

I valori riportati nelle tabelle di prodotto, da **pagina 36**, per il coefficiente di carico dinamico base  $C_0$  e per il carico limite di fatica  $P_u$  sono validi per cuscinetti singoli. Per quanto riguarda i gruppi di cuscinetti, si devono moltiplicare i valori relativi ai cuscinetti singoli per uno dei fattori di calcolo riportati nella **tabella 12**.

# Carichi equivalenti sul cuscinetto

Quando si deve stabilire il carico equivalente sul cuscinetto per i cuscinetti precaricati, si deve tenere in considerazione il precarico. In base alle condizioni di esercizio, la componente assiale richiesta del carico sul cuscinetto F<sub>a</sub>, per una coppia di cuscinetti disposti ad "O" oppure a "X", può essere calcolata approssimativamente usando le formule seguenti.

Per coppie di cuscinetti sottoposte a carico radiale e montate con interferenza

$$F_a = G_m$$

Per coppie di cuscinetti sottoposte a carico radiale e precaricate mediante molle

$$F_a = G_{A,B,C,D}$$

Per coppie di cuscinetti sottoposte a carico assiale e montate con interferenza

$$F_a = G_m + 0,67 K_a$$
 se  $K_a \le 3 G_m$   
 $F_a = K_a$  se  $K_a > 3 G_m$ 

Per coppie di cuscinetti sottoposte a carico assiale e precaricate mediante molle

$$F_a = G_{A,B,C,D} + K_a$$

dove

F<sub>a</sub> = componente assiale del carico [N]

G<sub>A,B,C,D</sub> = precarico del gruppo di cuscinetti prima del montaggio (→ tabella 4 a pagina 21) [N]

G<sub>m</sub> = precarico nella coppia di cuscinetti dopo il montaggio (→ *Precarico in* gruppi di cuscinetti dopo il montaggio, pagina 20) [N]

K<sub>a</sub> = forza assiale esterna che agisce su un singolo cuscinetto [N]

|                         |                                                                         |   | Tabella 12 |  |  |  |  |  |  |  |
|-------------------------|-------------------------------------------------------------------------|---|------------|--|--|--|--|--|--|--|
|                         | Fattori di calcolo per la capacità di carico<br>di gruppi di cuscinetti |   |            |  |  |  |  |  |  |  |
| Numero di<br>cuscinetti | Fattore di calcolo<br>per<br>C C <sub>0</sub> P <sub>u</sub>            |   |            |  |  |  |  |  |  |  |
| 2                       | 1,62                                                                    | 2 | 2          |  |  |  |  |  |  |  |
| 3                       | 2,16                                                                    | 3 | 3          |  |  |  |  |  |  |  |
| 4                       | 2,64                                                                    | 4 | 4          |  |  |  |  |  |  |  |

|                                                                            |                                                                        |               |            | Tabella 13                   |  |  |  |  |
|----------------------------------------------------------------------------|------------------------------------------------------------------------|---------------|------------|------------------------------|--|--|--|--|
| Fattori di calcolo per cuscinetti singoli e                                | cuscinetti ap                                                          | paiati in tan | dem        |                              |  |  |  |  |
| $f_0F_a/C_0$                                                               | F <sub>0</sub> F <sub>a</sub> /C <sub>0</sub> Fattori di calcolo e X Y |               |            |                              |  |  |  |  |
| Per angolo di contatto di 15°<br>suffisso nella denominazione CD (1)       |                                                                        |               |            |                              |  |  |  |  |
| ≤ 0,178<br>0,357<br>0,714<br>1,07                                          | 0,38<br>0,4<br>0,43<br>0,46                                            | 0,44          | 1,4<br>1,3 | 0,46<br>0,46<br>0,46<br>0,46 |  |  |  |  |
| 1,43<br>2,14<br>3,57<br>≥ 5,35                                             | 0,47<br>0,5<br>0,55<br>0,56                                            |               | 1,12       | 0,46<br>0,46<br>0,46<br>0,46 |  |  |  |  |
| Per angolo di contatto di 25°<br>suffisso nella denominazione ACD (3)<br>– | 0,68                                                                   | 0,41          | 0,87       | 0,38                         |  |  |  |  |

## Carico dinamico equivalente sul cuscinetto

Per cuscinetti singoli e cuscinetti appaiati in tandem

$$\begin{split} P &= F_r & \text{se } F_a/F_r \leq e \\ P &= XF_r + YF_a & \text{se } F_a/F_r > e \end{split}$$

Per coppie di cuscinetti, disposte ad "0" oppure a "X"

$$P = F_r + Y_1F_a$$
 se  $F_a/F_r \le e$   
 $P = XF_r + Y_2F_a$  fse  $F_a/F_r > e$ 

dove

P = carico dinamico equivalente del gruppo di cuscinetti [kN]

F<sub>r</sub> = componente radiale del carico che agisce sul gruppo di cuscinetti [kN]

F<sub>a</sub> = componente assiale del carico che agisce sul gruppo di cuscinetti [kN]

I valori per i fattori di calcolo e, X, Y,  $Y_1$  e  $Y_2$  dipendono dall'angolo di contatto del cuscinetto e sono riportati nelle **tabelle 13** e **14**. Per i cuscinetti con angolo di contatto di 15° i fattori dipendono anche dalla relazione  $f_0F_a/C_0$  dove  $f_0$  è il fattore di calcolo e  $C_0$  è il coefficiente base di carico statico ed entrambi sono riportati nelle tabelle di prodotto da **pagina 36**.

# Carico statico equivalente sul cuscinetto

Per cuscinetti singoli e cuscinetti appaiati in tandem

$$P_0 = 0.5 F_r + Y_0 F_a$$

Per coppie di cuscinetti, disposte ad "0" oppure a "X"

$$P_0 = F_r + Y_0 F_a$$

dove

P<sub>0</sub> = carico statico equivalente del gruppo di cuscinetti [kN]

F<sub>r</sub> = componente radiale del carico che agisce sul gruppo di cuscinetti [kN]

F<sub>a</sub> = componente assiale del carico che agisce sul gruppo di cuscinetti [kN]

Se  $P_0 < F_p$  si dovrebbe applicare  $P_0 = F_p$  I valori per il fattore di calcolo  $Y_0$  dipendono dall'angolo di contatto del cuscinetto e sono riportati nelle **tabelle 13** e **14**.

| Fattori di calcolo per coppie di cuscinetti, disposte ad "0" oppure a "X"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           |      |      |                |                | Tabella 14 |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------|------|----------------|----------------|------------|--|--|--|--|--|
| e X Y <sub>1</sub> Y <sub>2</sub> Y <sub>0</sub> Per angolo di contatto di 15° suffisso nella denominazione CD (1)  ≤ 0,178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fattori di calcolo per coppie di cuscinetti, disposte ad "0" oppure a "X" |      |      |                |                |            |  |  |  |  |  |
| Per angolo di contatto di 15° suffisso nella denominazione CD (1)  ≤ 0,178 0,357 0,4 0,43 0,72 1,65 2,39 0,92 0,714 0,43 0,72 1,46 2,11 0,92 1,07 0,46 0,72 1,38 2 0,92 1,43 0,47 0,72 1,38 2 0,92 1,43 0,5 0,72 1,26 1,82 0,92 2,14 0,5 0,72 1,14 1,66 0,92 2,5,35 0,56 0,72 1,14 1,66 0,92 2,5,35 0,56 0,72 1,12 1,63 0,92 Per angolo di contatto di 25° suffisso nella denominazione ACD (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2 f_0 F_a / C_0$                                                         |      |      |                | .,             | V          |  |  |  |  |  |
| suffisso nella denominazione CD (1)  ≤ 0,178 0,38 0,72 1,65 2,39 0,92 0,357 0,4 0,72 1,57 2,28 0,92 0,714 0,43 0,72 1,46 2,11 0,92 1,07 0,46 0,72 1,38 2 0,92  1,43 0,47 0,72 1,34 1,93 0,92 2,14 0,5 0,72 1,26 1,82 0,92 3,57 0,55 0,72 1,14 1,66 0,92 ≥ 5,35 0,56 0,72 1,12 1,63 0,92  Per angolo di contatto di 25° suffisso nella denominazione ACD (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           | e    | X    | Y <sub>1</sub> | Y <sub>2</sub> |            |  |  |  |  |  |
| 0,357<br>0,4<br>0,72<br>1,57<br>2,28<br>0,92<br>0,714<br>1,07<br>1,07<br>1,43<br>2,11<br>0,92<br>1,43<br>2,14<br>0,5<br>0,72<br>1,34<br>1,93<br>0,92<br>2,14<br>0,5<br>0,72<br>1,26<br>1,82<br>0,92<br>3,57<br>2,535<br>0,55<br>0,72<br>1,14<br>1,66<br>0,92<br>2,14<br>1,66<br>0,92<br>2,14<br>1,66<br>0,92<br>2,14<br>1,66<br>0,92<br>2,14<br>1,66<br>0,92<br>2,16<br>1,12<br>1,63<br>0,92<br>2,16<br>1,63<br>0,92<br>2,17<br>1,63<br>0,92<br>2,18<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63<br>1,63 |                                                                           |      |      |                |                |            |  |  |  |  |  |
| 0,714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |      |      |                |                |            |  |  |  |  |  |
| 1,43 2,14 3,57 2,14 3,57 3,57 3,57 3,57 3,58 3,58 3,59 3,59 3,59 3,50 3,50 3,50 3,50 3,50 3,50 3,50 3,50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0,714                                                                     | 0,43 | 0,72 | 1,46           | 2,11           | 0,92       |  |  |  |  |  |
| 2,14 0,5 0,72 1,26 1,82 0,92 3,57 0,55 0,72 1,14 1,66 0,92 ≥ 5,35 0,56 0,72 1,12 1,63 0,92  Per angolo di contatto di 25° suffisso nella denominazione ACD (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,07                                                                      | 0,46 | 0,72 | 1,30           | 2              | 0,92       |  |  |  |  |  |
| 3,57 0,55 0,72 1,14 1,66 0,92 ≥ 5,35 0,56 0,72 1,12 1,63 0,92  Per angolo di contatto di 25° suffisso nella denominazione ACD (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                           |      |      |                |                |            |  |  |  |  |  |
| Per angolo di contatto di 25° suffisso nella denominazione ACD (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,57                                                                      | 0,55 | 0,72 | 1,14           | 1,66           | 0,92       |  |  |  |  |  |
| suffisso nella denominazione ACD (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                         | 0,50 | 0,72 | 1,12           | 1,05           | 0,72       |  |  |  |  |  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                           | 0,68 | 0,67 | 0.92           | 1,41           | 0,76       |  |  |  |  |  |
| 5,00 0,07 0,72 1,41 0,70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                           | 0,00 | 0,07 | 0,72           | _,,            | 0,70       |  |  |  |  |  |

## Velocità ammissibili

I valori relativi alle velocità ammissibili, riportati nelle tabelle di prodotto da **pagina 36**, devono essere considerati come valori di riferimento. Questi valori si applicano a cuscinetti singoli sottoposti a carico leggero ( $P \le 0.05$  C) e che sono leggermente precaricati mediante molle. Una buona capacità di dissipazione del calore costituisce inoltre uno dei requisiti fondamentali. Dato che sul labbro di tenuta non si produce alcun attrito, la velocità che si può raggiungere con un cuscinetto schermato è la stessa che si può ottenere con un cuscinetto aperto delle stesse dimensioni.

I valori indicati per la lubrificazione a olio si riferiscono al metodo di lubrificazione olio-aria; se si adotta un altro sistema di lubrificazione a olio tali valori dovrebbero essere ridotti. I valori indicati per la lubrificazione con grasso sono quelli massimi che si possono ottenere con i cuscinetti aperti o schermati utilizzando un buon grasso di lubrificazione a bassa consistenza e viscosità.

I cuscinetti schermati delle serie S719 .. D (SEB .. /S) e S70 .. D (EX .. /S) sono stati concepiti per il funzionamento a velocità elevate, cioè per un fattore velocità A fino a circa 1 400 000 mm/min.

Se cuscinetti singoli vengono registrati reciprocamente con un precarico più pesante o se si utilizzano gruppi di cuscinetti, le velocità ammissibili, riportate nelle tabelle di prodotto da **pagina 36**, dovranno essere ridotte, cioè i valori dovranno essere moltiplicati per un fattore di riduzione. I valori per il fattore di riduzione, che è determinato dalla

disposizione di cuscinetti e dalla classe di precarico, sono riportati nella **tabella 15**.

Se la velocità rotazionale ottenuta non è sufficiente per l'applicazione, si possono integrare distanziali accoppiati di precisione nel gruppo di cuscinetti, per aumentare la capacità di sopportare la velocità.

#### Gabbie

In base alle loro dimensioni, i cuscinetti delle serie 719 .. D (*SEB*) e 70 .. D (*EX*) sono dotati di gabbia in resina fenolica o in ottone:

- I cuscinetti con diametro foro d = 6 a 280 mm sono dotati di gabbia monoblocco guidata sull'anello esterno e realizzata in resina fenolica con rinforzo in tessuto (→ fig. 3), nessun suffisso nella denominazione (CE).
- I cuscinetti con diametro foro d = 300 a 360 mm sono dotati di gabbia monoblocco massiccia in ottone guidata sull'anello esterno, suffisso nella denominazione MA (LE).

Le gabbie in resina fenolica possono sopportare temperature fino a 120 °C, mentre quelle in ottone fino a 250 °C.

Su richiesta, i cuscinetti più comuni sono disponibili anche con gabbia stampata ad iniezione in polietereterchetone (PEEK) con rinforzo in fibra di vetro (→ fig. 3), suffisso nella denominazione TNHA (KE), che è idonea per temperature fino a 150 °C. Per i cuscinetti che sono disponibili nella versione con gabbia in PEEK nelle tabelle di prodotto da pagina 36 è riportata una nota a piè di pagina.

#### **Tenute**

Le tenute integrate nei cuscinetti schermati delle serie S719 .. D (SEB .. /S) e S70 .. D (EX .. /S) sono idonee per un fattore velocità A fino a circa 1 400 000 mm/min. La gamma delle temperature di esercizio ammissibili per queste tenute va da -25 a +100 °C e fino a 120 °C per brevi periodi.

|                                                              |                                                                    |                                                     |                                   |              |              | Tabella 15   |  |  |  |  |
|--------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------|--------------|--------------|--------------|--|--|--|--|
| Fattori di riduzione della velocità per gruppi di cuscinetti |                                                                    |                                                     |                                   |              |              |              |  |  |  |  |
| Numero di<br>cuscinetti                                      | Disposizione                                                       | Suffisso nella denominazione<br>per gruppi appaiati | Fattore di rid<br>per classe di p | ocità        |              |              |  |  |  |  |
|                                                              |                                                                    | per gruppruppulati                                  | A                                 | В            | С            | D            |  |  |  |  |
| 2                                                            | Disposizione ad "O"<br>Disposizione ad "X"                         | DB ( <i>DD</i> )<br>DF ( <i>FF</i> )                | 0,81<br>0,77                      | 0,75<br>0,72 | 0,65<br>0,61 | 0,4<br>0,36  |  |  |  |  |
| 3                                                            | Disposizione ad "O" e in tandem<br>Disposizione ad "X" e in tandem |                                                     | 0,7<br>0,63                       | 0,63<br>0,56 | 0,49<br>0,42 | 0,25<br>0,17 |  |  |  |  |
| 4                                                            | Disposizione ad "O" in tandem<br>Disposizione ad "X" in tandem     | QBC (TDT)<br>QFC (TFT)                              | 0,64<br>0,62                      | 0,6<br>0,58  | 0,53<br>0,48 | 0,32<br>0,27 |  |  |  |  |
|                                                              |                                                                    |                                                     |                                   |              |              |              |  |  |  |  |

Nota: Per quanto concerne i gruppi in tandem caricati a molla, suffisso DT (7) nella denominazione, si dovrebbe applicare un fattore di riduzione della velocità pari a 0,9.

## Materiali

Gli anelli e le sfere dei cuscinetti con sfere in acciaio delle serie 719 .. D (SEB) e 70 .. D (EX) sono realizzati in acciaio SKF di Grado 3, conformemente alla ISO 683-17:1999. Le sfere dei cuscinetti ibridi sono realizzate in nitruro di silicio di alta qualità  $\mathrm{Si_3N_4}$ . Gli anelli dei cuscinetti ibridi schermati, prefisso SV (suffisso /S/XN) nella denominazione, sono realizzati in NitroMax, l'acciaio inossidabile ad alto contenuto di azoto.

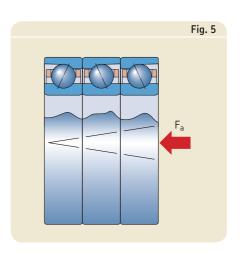
Le tenute integrate nei cuscinetti schermati sono realizzate in gomma acrilonitrilbutadiene (NBR) resistente all'olio e all'usura e sono dotate di rinforzo in lamiera d'acciaio. Anche gli O-ring dei cuscinetti per la lubrificazione a olio diretta, suffisso L (*GH*) nella denominazione, sono realizzati in gomma acrilonitrilbutadiene.

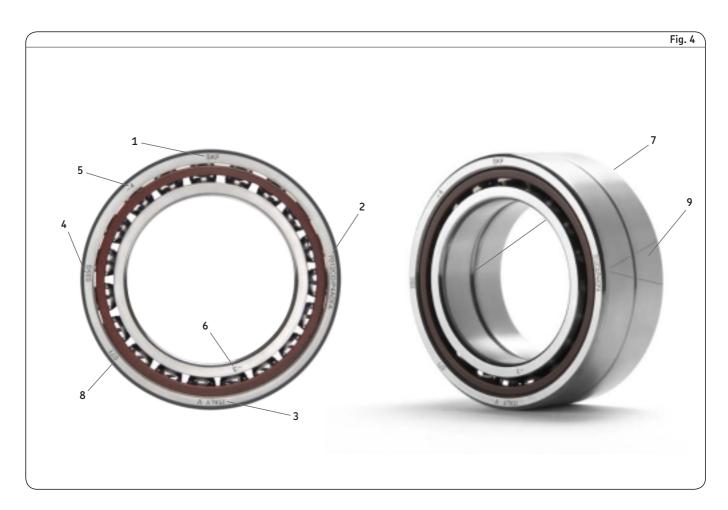
## Trattamento termico

Tutti i cuscinetti Super-precision SKF vengono sottoposti ad uno speciale trattamento termico che consente loro di raggiungere un buon equilibrio tra durezza e stabilità dimensionale. La durezza degli anelli e degli elementi volventi è stata ottimizzata per conferire ai cuscinetti proprietà di resistenza all'usura. Gli anelli dei cuscinetti delle serie 719 .. D (SEB) e 70 .. D (EX) vengono stabilizzati termicamente per sopportare temperature fino a 150 °C.



## Marcatura sui cuscinetti e sui gruppi di cuscinetti


La superficie esterna degli anelli dei cuscinetti SKF delle serie 719 .. D (SEB) e 70 .. D (EX) è contrassegnata da vari elementi di identificazione (→ fig. 4):


- 1 Marchio di fabbrica SKF
- 2 Denominazione completa del cuscinetto
- 3 Paese di produzione
- 4 Data di produzione, codificata
- 5 Scostamento del diametro esterno medio  $\Delta_{Dm}$  [ $\mu m$ ] e posizione di massima eccentricità dell'anello esterno
- 6 Scostamento del diametro medio foro  $\Delta_{dm}$  [ $\mu m$ ] e posizione di massima eccentricità dell'anello interno
- 7 Marchio su faccia assiale, punzonato
- 8 Numero di serie (solo gruppi di cuscinetti)
- **9** Marchio a forma di "V" (solo gruppi di cuscinetti appaiati)

I cuscinetti schermati sono contrassegnati in maniera simile.

#### Marchio a forma di "V"

Il marchio a forma di "V" impresso sulla superficie esterna degli anelli esterni dei gruppi di cuscinetti appaiati indica in che modo il cuscinetto dovrebbe essere montato per ottenere il precarico idoneo nel gruppo. Questo marchio indica inoltre come montare il gruppo di cuscinetti in riferimento al carico assiale. Il marchio a forma di "V" dovrebbe essere rivolto verso la direzione in cui il carico assiale agirà sull'anello interno ( $\rightarrow$  fig. 5). Nelle applicazioni in cui il carico assiale agisce in ambo le direzioni, il marchio a "V" dovrebbe essere rivolto verso la direzione in cui agirà il carico di entità maggiore.





## Confezioni

I cuscinetti Super-precision SKF sono commercializzati in confezioni con una nuova grafica SKF ( $\rightarrow$  fig. 6). Ogni confezione contiene un foglio di istruzioni con informazioni sul montaggio.

# Sistema di denominazione

Le denominazioni dei cuscinetti SKF delle serie 719 .. D (*SEB*) e 70 .. D (*EX*) sono riportate nella **tabella 16** a **pagina 34**, insieme alle corrispondenti definizioni.



#### Sistema di denominazione per i cuscinetti obliqui a sfere Super-precision SKF delle serie 719 .. D (SEB) e 70 .. D (EX)

Cuscinetto singolo: 71922 CDGBTNHA/PA9AL

|                               | 719   | 22              | CD                                | GB                                                   | TNHA   | / |    | PA9A                    | L |                   |           |
|-------------------------------|-------|-----------------|-----------------------------------|------------------------------------------------------|--------|---|----|-------------------------|---|-------------------|-----------|
| Prefisso<br>della<br>variante | Serie | Dimen-<br>sioni | Angolo di<br>contatto e<br>design | Esecuzione<br>e precarico<br>(cuscinetti<br>singoli) | Gabbia |   |    | Classe di<br>tolleranza |   | Disposi-<br>zione | Precarico |
| S                             | 70    | 10              | ACD                               |                                                      |        | / | НС | P4A                     |   | QBC               | С         |

Gruppo di cuscinetti appaiati: S7010 ACD/HCP4AQBCC

#### Variante (prefisso)

Cuscinetto aperto (nessun prefisso nella denominazione)

S Cuscinetto schermato

٧ Cuscinetto con anelli in acciaio NitroMax e sfere in nitruro di silicio Si<sub>3</sub>N<sub>4</sub>

#### Serie dei cuscinetti

719 Secondo la serie dimensionale 19 Secondo la serie dimensionale 10 70

#### Dimensioni cuscinetto

diametro foro 6 mm<sup>1)</sup> 6 7 diametro foro 7 mm<sup>1)</sup> 8 diametro foro 8 mm<sup>1)</sup> 9 diametro foro 9 mm<sup>1)</sup> 00 diametro foro 10 mm 01 diametro foro 12 mm 02 diametro foro 15 mm 03 diametro foro 17 mm diametro foro (x5) 20 mm 04 fino a

diametro foro (x5) 360 mm<sup>2)</sup>

#### Angolo di contatto e design interno

CD angolo di contatto di 15°, design base ad alta capacità di carico angolo di contatto di 25°, design base ad alta capacità di carico ACD

#### Cuscinetto singolo - esecuzione e precarico

Cuscinetto singolo (nessun suffisso nella denominazione) GA Singolo, per montaggio universale, per precarico ultra-leggero GB Singolo, per montaggio universale, per precarico leggero GC Singolo, per montaggio universale, per precarico moderato GD Singolo, per montaggio universale, per precarico pesante

#### Gabbia

MA

Resina fenolica con rinforzo in tessuto, centrata sull'anello

esterno (nessun suffisso nella denominazione) Massiccia in ottone, centrata sull'anello esterno

**TNHA** PEEK con rinforzo in fibra di vetro, centrata sull'anello esterno

#### Materiale per le sfere

Acciaio al carbonio cromo (nessun suffisso nella denominazione)

НС Nitruro di silicio Si<sub>3</sub>N<sub>4</sub> (cuscinetti ibridi)

#### Classe di tolleranza

P4A Precisione dimensionale secondo la classe 4 di tolleranza

ISO, precisione di rotazione migliore della classe 4 di

tolleranza ISO

Precisione dimensionale e di rotazione migliore della classe PA9A

ABEC 9 di tolleranza ABMA

#### Predisposizioni di lubrificazione

Due fori di lubrificazione nell'anello esterno per la

lubrificazione a olio diretta

H1 Due fori di lubrificazione nell'anello esterno (posizione

ottimizzata) per la lubrificazione a olio diretta

Scanalatura anulare con due fori di lubrificazione e due scanalature anulari dotate di O-ring nell'anello esterno per la

lubrificazione a olio diretta

#### Gruppo di cuscinetti - disposizione

| DB  | Due cuscinetti disposti ad "0" <>                   |
|-----|-----------------------------------------------------|
| DF  | Due cuscinetti disposti ad "X" ><                   |
| DT  | Due cuscinetti disposti in tandem <<                |
| DG  | Due cuscinetti per montaggio universale             |
| TBT | Tre cuscinetti disposti ad "0" ed in tandem <>>     |
| TFT | Tre cuscinetti disposti ad "X" ed in tandem ><<     |
| TT  | Tre cuscinetti disposti in tandem <<<               |
| TG  | Tre cuscinetti per montaggio universale             |
| QBC | Quattro cuscinetti disposti ad "O" in tandem <>>>   |
| QFC | Quattro cuscinetti disposti ad "X" in tandem >><<   |
| QBT | Quattro cuscinetti disposti ad "0" ed in tandem <>> |
|     | 6                                                   |

Quattro cuscinetti disposti ad "X" ed in tandem ><<< QFT Quattro cuscinetti disposti in tandem <<<< ΩT

OG Quattro cuscinetti per montaggio universale

#### Precarico del gruppo di cuscinetti

Precarico ultra-leggero В Precarico leggero С Precarico moderato D Precarico pesante

Precarico speciale, espresso in daN, ad es. G240 G...

<sup>&</sup>lt;sup>1)</sup> I cuscinetti della serie 719 .. D (SEB) sono disponibili solo per diametri foro a partire da d = 10 mm. I cuscinetti con diametro foro d > 280 mm non erano previsti nella precedente gamma della SNFA.

<sup>2)</sup> I cuscinetti della serie 70 .. D (EX) sono disponibili solo per diametri foro d ≤ 240 mm.

<sup>3)</sup> L'equivalenza tra le classi di precarico dei cuscinetti SKF e SNFA deve essere valutata in ogni singolo caso, poiché dipende dalle dimensioni e dalla disposizione dei cuscinetti.

Per ulteriori informazioni, rivolgersi al servizio di ingegneria dell'applicazione della SKF 4) Le gabbie in PEEK e in ottone non erano previste nella precedente gamma della SNFA.

#### Precedente sistema di denominazione SKF per i cuscinetti obliqui a sfere Super-precision delle serie 719 .. D (SEB) e 70 .. D (EX)

| Cuscinetto singolo:<br>SEB 110 /GH 9KE1 UL              | SEB               | 110        | /GH      | 9                       | KE     | 1                     | U            | L         |
|---------------------------------------------------------|-------------------|------------|----------|-------------------------|--------|-----------------------|--------------|-----------|
|                                                         | Serie e<br>design | Dimensioni | Variante | Classe di<br>tolleranza | Gabbia | Angolo di<br>contatto | Disposizione | Precarico |
| Gruppo di cuscinetti appaiati:<br>EX 50 /S/NS 7CE3 TDTM | EX                | 50         | /S/NS    | 7                       | CE     | 3                     | TDT          | М         |

#### Serie e design interno del cuscinetto

SEB Secondo la serie dimensionale ISO 19, design SEB ad alta capacità
EX Secondo la serie dimensionale ISO 10, design EX ad alta capacità

#### Dimensioni cuscinetto

6 diametro foro 6 mm<sup>1)</sup>

fino a

360 diametro foro 360 mm<sup>2)</sup>

#### Versione

Cuscinetto aperto (nessun suffisso nella denominazione)

/S Cuscinetto schermato

Sfere in acciaio al carbonio cromo (nessun suffisso nella denominazione)

/NS Sfere in nitruro di silicio Si<sub>3</sub>N<sub>4</sub> (cuscinetti ibridi)

/XN Cuscinetto con anelli in acciaio NitroMax e sfere in nitruro di silicio Si<sub>3</sub>N<sub>4</sub> (cuscinetti ibridi)

H Due fori di lubrificazione nell'anello esterno per la lubrificazione a olio diretta

H1 Due fori di lubrificazione nell'anello esterno (posizione ottimizzata) per la lubrificazione a olio diretta

GH Scanalatura anulare con due fori di lubrificazione e due scanalature anulari dotate di O-ring nell'anello esterno per la lubrificazione a olio

diretta

#### Classe di tolleranza

Precisione dimensionale e di rotazione secondo la classe ABEC 7 di tolleranza ABMA
 Precisione dimensionale e di rotazione secondo la classe ABEC 9 di tolleranza ABMA

#### Gabbia

CE Resina fenolica con rinforzo in tessuto, centrata sull'anello esterno KE PEEK con rinforzo in fibra di vetro, centrata sull'anello esterno

LE Massiccia in ottone, centrata sull'anello esterno<sup>4)</sup>

#### Angolo di contatto

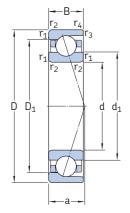
angolo di contatto di 15°angolo di contatto di 25°

#### Gruppo di cuscinetti - disposizione

DD Due cuscinetti disposti ad "0" <>
FF Due cuscinetti disposti ad "X" ><
T Due cuscinetti disposti in tandem <<
DU Due cuscinetti per montaggio universale
TD Tre cuscinetti disposti ad "0" ed in tandem <>>
TF Tre cuscinetti disposti ad "X" ed in tandem ><<
TU Tre cuscinetti disposti in tandem <<<
TU Tre cuscinetti per montaggio universale

TDT Quattro cuscinetti disposti ad "O" in tandem <>>>
TFT Quattro cuscinetti disposti ad "X" in tandem >>><
3TD Quattro cuscinetti disposti ad "X" in tandem <>>>
3TF Quattro cuscinetti disposti ad "O" ed in tandem >>>>
4T Quattro cuscinetti disposti in tandem <><<

4T Quattro cuscinetti disposti in tandem <<<< 4U Quattro cuscinetti per montaggio universale


#### Precarico del gruppo di cuscinetti<sup>3)</sup>

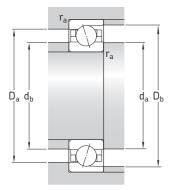
L Precarico leggero (solo per gruppi simmetrici)
 M Precarico moderato (solo per gruppi simmetrici)
 F Precarico pesante (solo per gruppi simmetrici)

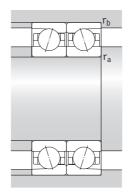
..daN Precarico speciale (per gruppi asimmetrici TD, TF, 3TD, 3TF e per esecuzioni con precarico speciale)

#### Cuscinetti obliqui a sfere Super-precision

#### d **6 – 15** mm



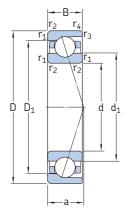




Versione aperta

Versione schermata per d = 10 a 150 mm

| <b>Dimensioni d'ingombro</b> d D B |                                                    | Coefficie<br>di carico<br>dinamico<br>C | statico                                                      | Carico limite Fattore di di fatica calcolo                 |                                                                      | in caso di<br>con                       | <b>mmissibili</b><br>lubrificazion<br>olio-aria <sup>1)</sup>                | Massa <sup>1)</sup>                                                                 | <b>Denominazioni</b><br><b>di cuscinetti aperti</b> <sup>2)</sup><br>SKF | SNFA                                                                                                                                 |                                                                                                                                |
|------------------------------------|----------------------------------------------------|-----------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| u                                  | D                                                  | D                                       | C                                                            | $C_0$                                                      | $P_u$                                                                | $f_0$                                   | grasso                                                                       | Olio-aria±/                                                                         |                                                                          |                                                                                                                                      |                                                                                                                                |
| mm                                 |                                                    |                                         | kN                                                           |                                                            | kN                                                                   | _                                       | giri/min                                                                     |                                                                                     | kg                                                                       | _                                                                                                                                    |                                                                                                                                |
| 6                                  | 17<br>17<br>17<br>17                               | 6<br>6<br>6                             | 2,03<br>2,03<br>1,95<br>1,95                                 | 0,77<br>0,77<br>0,75<br>0,75                               | 0,032<br>0,032<br>0,032<br>0,032                                     | 8,3<br>8,3<br>-<br>-                    | 120 000<br>140 000<br>110 000<br>130 000                                     | 180 000<br>220 000<br>160 000<br>190 000                                            | 0,0060<br>0,0060<br>0,0060<br>0,0060                                     | 706 CD/P4A<br>706 CD/HCP4A<br>706 ACD/P4A<br>706 ACD/HCP4A                                                                           | EX 6 7CE1<br>EX 6 /NS 7CE1<br>EX 6 7CE3<br>EX 6 /NS 7CE3                                                                       |
| 7                                  | 19<br>19<br>19<br>19                               | 6<br>6<br>6                             | 2,51<br>2,51<br>2,42<br>2,42                                 | 0,98<br>0,98<br>0,95<br>0,95                               | 0,04<br>0,04<br>0,04<br>0,04                                         | 8,1<br>8,1<br>-<br>-                    | 100 000<br>120 000<br>95 000<br>110 000                                      | 160 000<br>190 000<br>140 000<br>170 000                                            | 0,0070<br>0,0070<br>0,0070<br>0,0070                                     | 707 CD/P4A<br>707 CD/HCP4A<br>707 ACD/P4A<br>707 ACD/HCP4A                                                                           | EX 7 7CE1<br>EX 7 /NS 7CE1<br>EX 7 7CE3<br>EX 7 /NS 7CE3                                                                       |
| 8                                  | 22<br>22<br>22<br>22                               | 7<br>7<br>7<br>7                        | 3,25<br>3,25<br>3,19<br>3,19                                 | 1,37<br>1,37<br>1,34<br>1,34                               | 0,057<br>0,057<br>0,056<br>0,056                                     | 8,4<br>8,4<br>-                         | 90 000<br>110 000<br>80 000<br>95 000                                        | 130 000<br>160 000<br>120 000<br>150 000                                            | 0,011<br>0,010<br>0,011<br>0,010                                         | 708 CD/P4A<br>708 CD/HCP4A<br>708 ACD/P4A<br>708 ACD/HCP4A                                                                           | EX 8 7CE1<br>EX 8 /NS 7CE1<br>EX 8 7CE3<br>EX 8 /NS 7CE3                                                                       |
| 9                                  | 24<br>24<br>24<br>24                               | 7<br>7<br>7<br>7                        | 3,58<br>3,58<br>3,45<br>3,45                                 | 1,6<br>1,6<br>1,53<br>1,53                                 | 0,068<br>0,068<br>0,064<br>0,064                                     | 8,8<br>8,8<br>-<br>-                    | 80 000<br>95 000<br>75 000<br>85 000                                         | 120 000<br>150 000<br>110 000<br>130 000                                            | 0,014<br>0,012<br>0,014<br>0,012                                         | 709 CD/P4A<br>709 CD/HCP4A<br>709 ACD/P4A<br>709 ACD/HCP4A                                                                           | EX 9 7CE1<br>EX 9 /NS 7CE1<br>EX 9 7CE3<br>EX 9 /NS 7CE3                                                                       |
| 10                                 | 22<br>22<br>22<br>22<br>26<br>26<br>26<br>26<br>26 | 6<br>6<br>6<br>6<br>8<br>8<br>8         | 2,51<br>2,51<br>2,42<br>2,42<br>4,1<br>4,1<br>3,97<br>3,97   | 1,1<br>1,06<br>1,06<br>1,66<br>1,66<br>1,6<br>1,6          | 0,048<br>0,048<br>0,045<br>0,045<br>0,071<br>0,071<br>0,067<br>0,067 | 9,5<br>9,5<br>-<br>-<br>8,3<br>8,3<br>- | 70 000<br>80 000<br>63 000<br>70 000<br>75 000<br>90 000<br>67 000<br>80 000 | 110 000<br>120 000<br>95 000<br>110 000<br>110 000<br>140 000<br>100 000<br>120 000 | 0,0090<br>0,0080<br>0,0090<br>0,0080<br>0,018<br>0,016<br>0,018<br>0,016 | 71900 CD/P4A<br>71900 CD/HCP4A<br>71900 ACD/P4A<br>71900 ACD/HCP4A<br>7000 CD/P4A<br>7000 CD/HCP4A<br>7000 ACD/P4A<br>7000 ACD/HCP4A | SEB 10 7CE1<br>SEB 10 /NS 7CI<br>SEB 10 7CE3<br>SEB 10 /NS 7CI<br>EX 10 7CE1<br>EX 10 /NS 7CE2<br>EX 10 7CE3<br>EX 10 /NS 7CE3 |
| 12                                 | 24<br>24<br>24<br>24<br>28<br>28<br>28<br>28       | 6<br>6<br>6<br>6<br>8<br>8<br>8         | 2,65<br>2,65<br>2,55<br>2,55<br>4,49<br>4,49<br>4,36<br>4,36 | 1,25<br>1,25<br>1,18<br>1,18<br>1,9<br>1,9<br>1,83<br>1,83 | 0,053<br>0,053<br>0,05<br>0,05<br>0,05<br>0,08<br>0,08<br>0,078      | 9,8<br>9,8<br>-<br>-<br>8,7<br>8,7      | 63 000<br>75 000<br>56 000<br>67 000<br>67 000<br>80 000<br>60 000<br>70 000 | 95 000<br>110 000<br>85 000<br>100 000<br>100 000<br>120 000<br>90 000<br>110 000   | 0,010<br>0,0090<br>0,010<br>0,0090<br>0,020<br>0,017<br>0,020<br>0,017   | 71901 CD/P4A<br>71901 CD/HCP4A<br>71901 ACD/P4A<br>71901 ACD/HCP4A<br>7001 CD/P4A<br>7001 CD/HCP4A<br>7001 ACD/P4A<br>7001 ACD/HCP4A | SEB 12 7CE1<br>SEB 12 /NS 7CI<br>SEB 12 7CE3<br>SEB 12 /NS 7CI<br>EX 12 7CE1<br>EX 12 /NS 7CE2<br>EX 12 7CE3<br>EX 12 /NS 7CE3 |
| 15                                 | 28<br>28<br>28<br>28<br>32<br>32<br>32<br>32<br>32 | 7<br>7<br>7<br>7<br>9<br>9<br>9         | 3,97<br>3,97<br>3,77<br>3,77<br>5,2<br>5,2<br>4,94<br>4,94   | 1,9<br>1,8<br>1,8<br>2,45<br>2,45<br>2,32<br>2,32          | 0,08<br>0,08<br>0,078<br>0,078<br>0,104<br>0,104<br>0,098<br>0,098   | 9,6<br>9,6<br>-<br>-<br>9,3<br>9,3<br>- | 56 000<br>70 000<br>50 000<br>60 000<br>56 000<br>67 000<br>50 000<br>60 000 | 85 000<br>100 000<br>75 000<br>90 000<br>85 000<br>100 000<br>75 000<br>95 000      | 0,015<br>0,013<br>0,015<br>0,013<br>0,028<br>0,025<br>0,025<br>0,025     | 71902 CD/P4A<br>71902 CD/HCP4A<br>71902 ACD/P4A<br>71902 ACD/HCP4A<br>7002 CD/P4A<br>7002 CD/HCP4A<br>7002 ACD/P4A<br>7002 ACD/HCP4A | SEB 15 7CE1<br>SEB 15 /NS 7C<br>SEB 15 /NS 7C<br>SEB 15 /NS 7C<br>EX 15 7CE1<br>EX 15 /NS 7CE2<br>EX 15 7CE3<br>EX 15 /NS 7CE3 |

Valido solo per cuscinetti aperti
 Per le denominazioni dei cuscinetti schermati e di altre varianti, fare riferimento alla tabella 16 alle pagine 34 e 35.



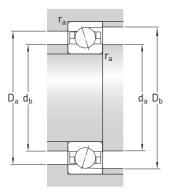


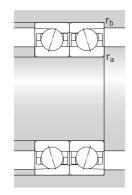

| Dimensio | ni                                                           |                                                              |                                                      |                                                      |                                        | Dimensio<br>cuscinet                         |                                                    | amento e del                                                 | componente (                                         | che accoglie il                                      |
|----------|--------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------|----------------------------------------------|----------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| d        | d <sub>1</sub> ~                                             | D <sub>1</sub> ~                                             | r <sub>1,2</sub><br>min                              | r <sub>3,4</sub><br>min                              | a                                      | d <sub>a</sub> , d <sub>b</sub><br>min       | D <sub>a</sub><br>max                              | D <sub>b</sub><br>max                                        | r <sub>a</sub><br>max                                | r <sub>b</sub><br>max                                |
| mm       |                                                              |                                                              |                                                      |                                                      |                                        | mm                                           |                                                    |                                                              |                                                      |                                                      |
| 6        | 9,5<br>9,5<br>9,5<br>9,5                                     | 13,5<br>13,5<br>13,5<br>13,5                                 | 0,3<br>0,3<br>0,3<br>0,3                             | 0,15<br>0,15<br>0,15<br>0,15                         | 5<br>5<br>5<br>5                       | 8,5<br>8,5<br>8,5<br>8,5                     | 15<br>15<br>15<br>15                               | 16,2<br>16,2<br>16,2<br>16,2                                 | 0,3<br>0,3<br>0,3<br>0,3                             | 0,15<br>0,15<br>0,15<br>0,15<br>0,15                 |
| 7        | 10,8<br>10,8<br>10,8<br>10,8                                 | 15,2<br>15,2<br>15,2<br>15,2                                 | 0,3<br>0,3<br>0,3<br>0,3                             | 0,15<br>0,15<br>0,15<br>0,15                         | 5<br>5<br>5<br>5                       | 9,5<br>9,5<br>9,5<br>9,5                     | 17<br>17<br>17<br>17                               | 18,2<br>18,2<br>18,2<br>18,2                                 | 0,3<br>0,3<br>0,3<br>0,3                             | 0,15<br>0,15<br>0,15<br>0,15                         |
| 8        | 12,6<br>12,6<br>12,6<br>12,6                                 | 17,4<br>17,4<br>17,4<br>17,4                                 | 0,3<br>0,3<br>0,3<br>0,3                             | 0,2<br>0,2<br>0,2<br>0,2                             | 6<br>6<br>7<br>7                       | 10<br>10<br>10<br>10                         | 20<br>20<br>20<br>20                               | 20,6<br>20,6<br>20,6<br>20,6                                 | 0,3<br>0,3<br>0,3<br>0,3                             | 0,2<br>0,2<br>0,2<br>0,2                             |
| 9        | 14,1<br>14,1<br>14,1<br>14,1                                 | 18,9<br>18,9<br>18,9<br>18,9                                 | 0,3<br>0,3<br>0,3<br>0,3                             | 0,2<br>0,2<br>0,2<br>0,2                             | 6<br>6<br>7<br>7                       | 11<br>11<br>11<br>11                         | 22<br>22<br>22<br>22<br>22                         | 22,6<br>22,6<br>22,6<br>22,6                                 | 0,3<br>0,3<br>0,3<br>0,3                             | 0,2<br>0,2<br>0,2<br>0,2                             |
| 10       | 14<br>14<br>14<br>14<br>15,1<br>15,1<br>15,1<br>15,1         | 18<br>18<br>18<br>18<br>20,9<br>20,9<br>20,9<br>20,9         | 0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3        | 0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2 | 5<br>7<br>7<br>6<br>6<br>8             | 12<br>12<br>12<br>12<br>12<br>12<br>12<br>12 | 20<br>20<br>20<br>20<br>24<br>24<br>24<br>24       | 20,6<br>20,6<br>20,6<br>20,6<br>24,6<br>24,6<br>24,6<br>24,6 | 0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3        | 0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2 |
| 12       | 16<br>16<br>16<br>16<br>17,1<br>17,1<br>17,1                 | 20<br>20<br>20<br>20<br>22,9<br>22,9<br>22,9<br>22,9         | 0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3        | 0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2 | 5<br>7<br>7<br>7<br>7<br>9             | 14<br>14<br>14<br>14<br>14<br>14<br>14       | 22<br>22<br>22<br>22<br>26<br>26<br>26<br>26<br>26 | 22,6<br>22,6<br>22,6<br>22,6<br>26,6<br>26,6<br>26,6<br>26,6 | 0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3 | 0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2 |
| 15       | 19,1<br>19,1<br>19,1<br>19,1<br>20,6<br>20,6<br>20,6<br>20,6 | 23,9<br>23,9<br>23,9<br>23,9<br>26,4<br>26,4<br>26,4<br>26,4 | 0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3 | 0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2 | 6<br>6<br>9<br>9<br>8<br>8<br>10<br>10 | 17<br>17<br>17<br>17<br>17<br>17<br>17       | 26<br>26<br>26<br>26<br>30<br>30<br>30<br>30       | 26,6<br>26,6<br>26,6<br>30,6<br>30,6<br>30,6<br>30,6         | 0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3        | 0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2 |

## Cuscinetti obliqui a sfere Super-precision

## d **17 – 35** mm

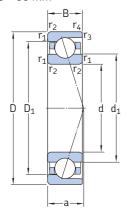






Versione aperta

Versione schermata per d = 10 a 150 mm

| Dime | nsioni d'                                    | ingombro                                     | carico                                                       |                                                          | Carico limite<br>di fatica                                           | Fattore di<br>calcolo                     | in caso di                                                                   | ammissibili<br>lubrificazione                                                | Massa <sup>1)</sup>                                                  | Denominazioni<br>di cuscinetti aperti <sup>2)</sup><br>SKF                                                                                           | SNFA                                                                                                                             |
|------|----------------------------------------------|----------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| d    | D                                            | В                                            | dinamico<br>C                                                | C <sub>0</sub>                                           | $P_{u}$                                                              | $f_0$                                     | con<br>grasso                                                                | olio-aria <sup>1)</sup>                                                      |                                                                      | SKF                                                                                                                                                  | SNFA                                                                                                                             |
| mm   |                                              |                                              | kN                                                           |                                                          | kN                                                                   | _                                         | giri/min                                                                     |                                                                              | kg                                                                   | _                                                                                                                                                    |                                                                                                                                  |
| 17   | 30<br>30<br>30<br>30<br>35<br>35<br>35<br>35 | 7<br>7<br>7<br>7<br>10<br>10<br>10           | 4,16<br>4,16<br>3,97<br>3,97<br>6,76<br>6,76<br>6,5          | 2,08<br>2,08<br>2<br>2<br>3,25<br>3,25<br>3,1<br>3,1     | 0,088<br>0,088<br>0,085<br>0,085<br>0,137<br>0,137<br>0,132<br>0,132 | 9,8<br>9,8<br>-<br>-<br>9,1<br>9,1<br>-   | 50 000<br>63 000<br>45 000<br>53 000<br>50 000<br>60 000<br>45 000<br>56 000 | 75 000<br>90 000<br>67 000<br>80 000<br>75 000<br>95 000<br>70 000<br>85 000 | 0,017<br>0,017<br>0,017<br>0,017<br>0,037<br>0,032<br>0,037<br>0,032 | 71903 CD/P4A<br>71903 CD/HCP4A<br>71903 ACD/P4A<br>71903 ACD/HCP4A<br>7003 CD/P4A<br>7003 CD/HCP4A<br>7003 ACD/P4A<br>7003 ACD/HCP4A                 | SEB 17 7CE1<br>SEB 17 /NS 7CE:<br>SEB 17 7CE3<br>SEB 17 /NS 7CE:<br>EX 17 7CE1<br>EX 17 /NS 7CE1<br>EX 17 7CE3<br>EX 17 /NS 7CE3 |
| 20   | 37<br>37<br>37<br>37<br>42<br>42<br>42<br>42 | 9<br>9<br>9<br>12<br>12<br>12<br>12          | 6,05<br>6,05<br>5,72<br>5,72<br>8,71<br>8,71<br>8,32<br>8,32 | 3,2<br>3,2<br>3,05<br>3,05<br>4,3<br>4,3<br>4,15<br>4,15 | 0,137<br>0,137<br>0,129<br>0,129<br>0,18<br>0,18<br>0,173<br>0,173   | 9,8<br>9,8<br>-<br>-<br>9,2<br>9,2<br>-   | 43 000<br>53 000<br>38 000<br>45 000<br>43 000<br>50 000<br>38 000<br>45 000 | 63 000<br>75 000<br>56 000<br>67 000<br>63 000<br>80 000<br>60 000<br>70 000 | 0,035<br>0,031<br>0,035<br>0,031<br>0,065<br>0,058<br>0,065<br>0,058 | 71904 CD/P4A<br>71904 CD/HCP4A<br>71904 ACD/P4A<br>71904 ACD/HCP4A<br>7004 CD/P4A<br>7004 CD/HCP4A<br>7004 ACD/P4A<br>7004 ACD/HCP4A                 | SEB 20 7CE1<br>SEB 20 /NS 7CE3<br>SEB 20 7CE3<br>SEB 20 /NS 7CE3<br>EX 20 7CE1<br>EX 20 /NS 7CE1<br>EX 20 7CE3<br>EX 20 /NS 7CE3 |
| 25   | 42<br>42<br>42<br>42<br>47<br>47<br>47       | 9<br>9<br>9<br>12<br>12<br>12<br>12          | 6,76<br>6,76<br>6,37<br>6,37<br>9,56<br>9,56<br>9,23<br>9,23 | 4<br>4<br>3,8<br>3,8<br>5,2<br>5,2<br>5,2<br>5           | 0,17<br>0,17<br>0,16<br>0,16<br>0,22<br>0,22<br>0,212<br>0,212       | 10,2<br>10,2<br>-<br>-<br>9,6<br>9,6      | 36 000<br>45 000<br>32 000<br>38 000<br>36 000<br>43 000<br>34 000<br>40 000 | 53 000<br>63 000<br>48 000<br>56 000<br>56 000<br>67 000<br>50 000<br>60 000 | 0,042<br>0,037<br>0,042<br>0,037<br>0,075<br>0,066<br>0,075<br>0,066 | 71905 CD/P4A<br>71905 CD/HCP4A<br>71905 ACD/P4A<br>71905 ACD/HCP4A<br>7005 CD/P4A<br>7005 CD/HCP4A<br>7005 ACD/P4A<br>7005 ACD/HCP4A                 | SEB 25 7CE1<br>SEB 25 /NS 7CE3<br>SEB 25 7CE3<br>SEB 25 /NS 7CE3<br>EX 25 7CE1<br>EX 25 /NS 7CE1<br>EX 25 7CE3<br>EX 25 /NS 7CE3 |
| 30   | 47<br>47<br>47<br>47<br>55<br>55<br>55       | 9<br>9<br>9<br>13<br>13<br>13                | 7,15<br>7,15<br>6,76<br>6,76<br>14,3<br>14,3<br>13,8<br>13,8 | 4,55<br>4,55<br>4,3<br>4,3<br>8<br>8<br>7,65<br>7,65     | 0,193<br>0,193<br>0,183<br>0,183<br>0,34<br>0,34<br>0,325<br>0,325   | 10,4<br>10,4<br>-<br>-<br>9,4<br>9,4      | 30 000<br>38 000<br>26 000<br>32 000<br>32 000<br>38 000<br>28 000<br>34 000 | 45 000<br>53 000<br>40 000<br>48 000<br>48 000<br>56 000<br>43 000<br>53 000 | 0,048<br>0,043<br>0,048<br>0,043<br>0,11<br>0,094<br>0,11<br>0,094   | 71906 CD/P4A<br>71906 CD/HCP4A<br>71906 ACD/P4A<br>71906 ACD/HCP4A<br>7006 CD/P4A<br>7006 CD/HCP4A<br>7006 ACD/P4A<br>7006 ACD/HCP4A                 | SEB 30 7CE1<br>SEB 30 /NS 7CE1<br>SEB 30 7CE3<br>SEB 30 /NS 7CE3<br>EX 30 7CE1<br>EX 30 /NS 7CE1<br>EX 30 7CE3<br>EX 30 /NS 7CE3 |
| 35   | 55<br>55<br>55<br>55<br>62<br>62<br>62<br>62 | 10<br>10<br>10<br>10<br>14<br>14<br>14<br>14 | 9,75<br>9,75<br>9,23<br>9,23<br>15,6<br>15,6<br>14,8<br>14,8 | 6,55<br>6,55<br>6,2<br>6,2<br>9,5<br>9,5<br>9            | 0,275<br>0,275<br>0,26<br>0,26<br>0,4<br>0,4<br>0,38<br>0,38         | 10,4<br>10,4<br>-<br>-<br>9,7<br>9,7<br>- | 26 000<br>32 000<br>22 000<br>28 000<br>24 000<br>28 000<br>20 000<br>24 000 | 40 000<br>45 000<br>36 000<br>43 000<br>36 000<br>43 000<br>32 000<br>38 000 | 0,074<br>0,065<br>0,074<br>0,065<br>0,15<br>0,13<br>0,15<br>0,13     | 71907 CD/P4A<br>71907 CD/HCP4A<br>71907 ACD/P4A<br>71907 ACD/HCP4A<br>7007 CD/P4A<br>7007 CD/HCP4A<br>7007 ACD/P4A<br>7007 ACD/P4A<br>7007 ACD/HCP4A | SEB 35 7CE1<br>SEB 35 /NS 7CE1<br>SEB 35 7CE3<br>SEB 35 /NS 7CE3<br>EX 35 7CE1<br>EX 35 /NS 7CE1<br>EX 35 7CE3<br>EX 35 /NS 7CE3 |


<sup>1)</sup> Valido solo per cuscinetti aperti 2) Per le denominazioni dei cuscinetti schermati e di altre varianti, fare riferimento alla **tabella 16** alle **pagine 34** e **35**.

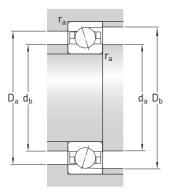


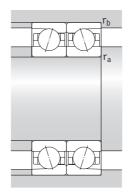


| Dimensio | ni                                                           |                                                              |                                               |                                                      |                                              | Dimensio<br>cuscinet                                         |                                                              | amento e del                                                 | componente (                                  | che accoglie il                                      |
|----------|--------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|
| d        | d <sub>1</sub> ~                                             | D <sub>1</sub>                                               | r <sub>1,2</sub><br>min                       | r <sub>3,4</sub><br>min                              | a                                            | d <sub>a</sub> , d <sub>b</sub><br>min                       | D <sub>a</sub><br>max                                        | D <sub>b</sub><br>max                                        | r <sub>a</sub><br>max                         | r <sub>b</sub><br>max                                |
| mm       |                                                              |                                                              |                                               |                                                      |                                              | mm                                                           |                                                              |                                                              |                                               |                                                      |
| 17       | 20,9<br>20,9<br>20,9<br>20,9<br>22,6<br>22,6<br>22,6<br>22,6 | 25,9<br>25,9<br>25,9<br>25,9<br>29,3<br>29,3<br>29,3<br>29,3 | 0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3 | 0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2 | 7<br>7<br>9<br>9<br>9<br>9<br>11<br>11       | 19<br>19<br>19<br>19<br>19<br>19<br>19                       | 28<br>28<br>28<br>28<br>33<br>33<br>33<br>33                 | 28.6<br>28.6<br>28.6<br>28.6<br>33.6<br>33.6<br>33.6<br>33.6 | 0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3 | 0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2<br>0,2 |
| 20       | 25,6<br>25,6<br>25,6<br>25,6<br>27,1<br>27,1<br>27,1<br>27,1 | 31,4<br>31,4<br>31,4<br>31,4<br>34,8<br>34,8<br>34,8<br>34,8 | 0,3<br>0,3<br>0,3<br>0,6<br>0,6<br>0,6<br>0,6 | 0,2<br>0,2<br>0,2<br>0,2<br>0,3<br>0,3<br>0,3        | 8<br>8<br>11<br>11<br>10<br>10<br>13<br>13   | 22<br>22<br>22<br>22<br>23,2<br>23,2<br>23,2<br>23,2         | 35<br>35<br>35<br>35<br>38,8<br>38,8<br>38,8<br>38,8         | 35,6<br>35,6<br>35,6<br>35,6<br>40<br>40<br>40               | 0,3<br>0,3<br>0,3<br>0,6<br>0,6<br>0,6<br>0,6 | 0,2<br>0,2<br>0,2<br>0,2<br>0,3<br>0,3<br>0,3<br>0,3 |
| 25       | 30,6<br>30,6<br>30,6<br>30,6<br>32,1<br>32,1<br>32,1<br>32,1 | 36,4<br>36,4<br>36,4<br>36,4<br>39,9<br>39,9<br>39,9         | 0,3<br>0,3<br>0,3<br>0,6<br>0,6<br>0,6<br>0,6 | 0,2<br>0,2<br>0,2<br>0,2<br>0,3<br>0,3<br>0,3        | 9<br>9<br>12<br>12<br>11<br>11<br>15<br>15   | 27<br>27<br>27<br>27<br>28,2<br>28,2<br>28,2<br>28,2<br>28,2 | 40<br>40<br>40<br>43,8<br>43,8<br>43,8<br>43,8               | 40,6<br>40,6<br>40,6<br>40,6<br>45<br>45<br>45               | 0,3<br>0,3<br>0,3<br>0,6<br>0,6<br>0,6<br>0,6 | 0,2<br>0,2<br>0,2<br>0,2<br>0,3<br>0,3<br>0,3<br>0,3 |
| 30       | 35,6<br>35,6<br>35,6<br>35,6<br>37,7<br>37,7<br>37,7         | 41,4<br>41,4<br>41,4<br>41,4<br>47,3<br>47,3<br>47,3<br>47,3 | 0,3<br>0,3<br>0,3<br>0,3<br>1<br>1<br>1       | 0,2<br>0,2<br>0,2<br>0,2<br>0,3<br>0,3<br>0,3        | 10<br>10<br>14<br>14<br>12<br>12<br>17<br>17 | 32<br>32<br>32<br>32<br>34,6<br>34,6<br>34,6<br>34,6         | 45<br>45<br>45<br>45<br>50,4<br>50,4<br>50,4                 | 45,6<br>45,6<br>45,6<br>45,6<br>53<br>53<br>53<br>53         | 0,3<br>0,3<br>0,3<br>0,3<br>1<br>1<br>1       | 0,2<br>0,2<br>0,2<br>0,2<br>0,3<br>0,3<br>0,3<br>0,3 |
| 35       | 41,6<br>41,6<br>41,6<br>41,6<br>43,7<br>43,7<br>43,7<br>43,7 | 48,4<br>48,4<br>48,4<br>53,3<br>53,3<br>53,3<br>53,3         | 0,6<br>0,6<br>0,6<br>0,6<br>1<br>1<br>1       | 0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3        | 11<br>11<br>16<br>16<br>14<br>14<br>19       | 38,2<br>38,2<br>38,2<br>38,2<br>39,6<br>39,6<br>39,6<br>39,6 | 51,8<br>51,8<br>51,8<br>51,8<br>57,4<br>57,4<br>57,4<br>57,4 | 53,6<br>53,6<br>53,6<br>53,6<br>60<br>60<br>60               | 0,6<br>0,6<br>0,6<br>0,6<br>1<br>1<br>1       | 0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3 |

## Cuscinetti obliqui a sfere Super-precision d **40 – 60** mm



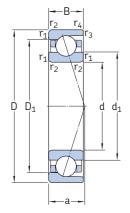




Versione aperta

Versione schermata per d = 10 a 150 mm

| Dime | nsioni d'                                    | ingombro                               | carico                                                       |                                                              | Carico limite<br>di fatica                                     | Fattore di<br>calcolo                  | in caso di                                                                   | ammissibili<br>lubrificazione                                                |                                                                | Denominazioni<br>di cuscinetti aperti <sup>2)</sup><br>SKF                                                                                                                                    | SNFA                                                                                                                                                                                   |
|------|----------------------------------------------|----------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d    | D                                            | В                                      | dinamico<br>C                                                | C <sub>0</sub>                                               | $P_u$                                                          | $f_0$                                  | con<br>grasso                                                                | olio-aria <sup>1)</sup>                                                      |                                                                | SVL                                                                                                                                                                                           | SINFA                                                                                                                                                                                  |
| mm   |                                              |                                        | kN                                                           |                                                              | kN                                                             | _                                      | giri/min                                                                     |                                                                              | kg                                                             | _                                                                                                                                                                                             |                                                                                                                                                                                        |
| 40   | 62<br>62<br>62<br>62<br>68<br>68<br>68       | 12<br>12<br>12<br>12<br>15<br>15<br>15 | 12,4<br>12,4<br>11,7<br>11,7<br>16,8<br>16,8<br>15,9<br>15,9 | 8,5<br>8,5<br>8<br>11<br>11<br>10,4<br>10,4                  | 0,36<br>0,36<br>0,34<br>0,34<br>0,465<br>0,465<br>0,444        | 10,4<br>10,4<br>-<br>-<br>10,0<br>10,0 | 20 000<br>28 000<br>18 000<br>22 000<br>20 000<br>24 000<br>19 000<br>22 000 | 34 000<br>40 000<br>30 000<br>36 000<br>32 000<br>38 000<br>30 000<br>34 000 | 0,11<br>0,096<br>0,11<br>0,096<br>0,19<br>0,16<br>0,19<br>0,16 | 71908 CD/P4A<br>71908 CD/HCP4A<br>71908 ACD/P4A<br>71908 ACD/HCP4A<br>71908 CD/P4A <sup>3)</sup><br>7008 CD/HCP4A <sup>3)</sup><br>7008 ACD/P4A <sup>3)</sup><br>7008 ACD/HCP4A <sup>3)</sup> | SEB 40 7CE1<br>SEB 40 /NS 7CE<br>SEB 40 7CE3<br>SEB 40 7CE13<br>EX 40 7CE13<br>EX 40 /NS 7CE13<br>EX 40 7CE33<br>EX 40 /NS 7CE3                                                        |
| 45   | 68<br>68<br>68<br>75<br>75<br>75             | 12<br>12<br>12<br>12<br>16<br>16<br>16 | 13<br>13<br>12,4<br>12,4<br>28,6<br>28,6<br>27,6             | 9,5<br>9,5<br>9<br>9<br>22,4<br>22,4<br>21,6<br>21,6         | 0,4<br>0,4<br>0,38<br>0,38<br>0,95<br>0,95<br>0,9              | 10,5<br>10,5<br>-<br>15,1<br>15,1<br>- | 19 000<br>24 000<br>17 000<br>20 000<br>19 000<br>22 000<br>17 000<br>20 000 | 32 000<br>36 000<br>28 000<br>34 000<br>30 000<br>34 000<br>26 000<br>32 000 | 0,13<br>0,11<br>0,13<br>0,11<br>0,23<br>0,20<br>0,23<br>0,20   | 71909 CD/P4A<br>71909 CD/HCP4A<br>71909 ACD/P4A<br>71909 ACD/HCP4A<br>7009 CD/P4A <sup>3)</sup><br>7009 CD/HCP4A <sup>3)</sup><br>7009 ACD/P4A <sup>3)</sup><br>7009 ACD/HCP4A <sup>3)</sup>  | SEB 45 7CE1<br>SEB 45 /NS 7CE3<br>SEB 45 7CE3<br>SEB 45 /NS 7CE3<br>EX 45 7CE13<br>EX 45 /NS 7CE13<br>EX 45 7CE33<br>EX 45 /NS 7CE33                                                   |
| 50   | 72<br>72<br>72<br>72<br>80<br>80<br>80<br>80 | 12<br>12<br>12<br>12<br>16<br>16<br>16 | 13,5<br>13,5<br>12,7<br>12,7<br>29,6<br>29,6<br>28,1<br>28,1 | 10,4<br>10,4<br>9,8<br>9,8<br>24<br>24<br>23,2<br>23,2       | 0,44<br>0,44<br>0,415<br>0,415<br>1,02<br>1,02<br>0,98<br>0,98 | 10,7<br>10,7<br>-<br>-<br>15,4<br>15,4 | 17 000<br>22 000<br>16 000<br>19 000<br>17 000<br>20 000<br>15 000<br>18 000 | 28 000<br>34 000<br>26 000<br>30 000<br>28 000<br>32 000<br>24 000<br>28 000 | 0,13<br>0,11<br>0,13<br>0,11<br>0,25<br>0,21<br>0,25<br>0,21   | 71910 CD/P4A<br>71910 CD/HCP4A<br>71910 ACD/P4A<br>71910 ACD/HCP4A<br>7010 CD/P4A <sup>3)</sup><br>7010 CD/HCP4A <sup>3)</sup><br>7010 ACD/P4A <sup>3)</sup><br>7010 ACD/HCP4A <sup>3)</sup>  | SEB 50 7CE1<br>SEB 50 /NS 7CE3<br>SEB 50 7CE3<br>SEB 50 /NS 7CE3<br>EX 50 7CE1 <sup>3</sup><br>EX 50 /NS 7CE1 <sup>3</sup><br>EX 50 7CE3 <sup>3</sup><br>EX 50 /NS 7CE3 <sup>3</sup>   |
| 55   | 80<br>80<br>80<br>80<br>90<br>90<br>90       | 13<br>13<br>13<br>13<br>18<br>18<br>18 | 19,5<br>19,5<br>18,2<br>18,2<br>39,7<br>39,7<br>37,1<br>37,1 | 14,6<br>14,6<br>13,7<br>13,7<br>32,5<br>32,5<br>31<br>31     | 0,62<br>0,62<br>0,585<br>0,585<br>1,37<br>1,37<br>1,32<br>1,32 | 10,4<br>10,4<br>-<br>15,1<br>15,1<br>- | 16 000<br>19 000<br>15 000<br>17 000<br>15 000<br>18 000<br>14 000<br>17 000 | 26 000<br>30 000<br>24 000<br>28 000<br>24 000<br>28 000<br>22 000<br>26 000 | 0,18<br>0,15<br>0,18<br>0,15<br>0,37<br>0,31<br>0,37<br>0,31   | 71911 CD/P4A<br>71911 CD/HCP4A<br>71911 ACD/P4A<br>71911 ACD/HCP4A<br>7011 CD/P4A <sup>3)</sup><br>7011 CD/HCP4A <sup>3)</sup><br>7011 ACD/P4A <sup>3)</sup><br>7011 ACD/HCP4A <sup>3)</sup>  | SEB 55 7CE1<br>SEB 55 /NS 7CE3<br>SEB 55 7CE3<br>SEB 55 /NS 7CE3<br>EX 55 7CE13)<br>EX 55 /NS 7CE13<br>EX 55 7CE33<br>EX 55 /NS 7CE33                                                  |
| 60   | 85<br>85<br>85<br>85<br>95<br>95<br>95       | 13<br>13<br>13<br>13<br>18<br>18<br>18 | 19,9<br>19,9<br>18,6<br>18,6<br>40,3<br>40,3<br>39           | 15,3<br>15,3<br>14,6<br>14,6<br>34,5<br>34,5<br>33,5<br>33,5 | 0,655<br>0,655<br>0,62<br>0,62<br>1,5<br>1,5<br>1,4            | 10,5<br>10,5<br>-<br>-<br>15,4<br>15,4 | 15 000<br>18 000<br>14 000<br>16 000<br>14 000<br>17 000<br>13 000<br>15 000 | 24 000<br>28 000<br>22 000<br>26 000<br>22 000<br>26 000<br>20 000<br>24 000 | 0,19<br>0,16<br>0,19<br>0,16<br>0,40<br>0,34<br>0,40<br>0,34   | 71912 CD/P4A<br>71912 CD/HCP4A<br>71912 ACD/P4A<br>71912 ACD/HCP4A<br>7012 CD/P4A <sup>3)</sup><br>7012 CD/HCP4A <sup>3)</sup><br>7012 ACD/P4A <sup>3)</sup><br>7012 ACD/HCP4A <sup>3)</sup>  | SEB 60 7CE1<br>SEB 60 /NS 7CE1<br>SEB 60 7CE3<br>SEB 60 /NS 7CE3<br>EX 60 7CE1 <sup>3</sup><br>EX 60 /NS 7CE1 <sup>3</sup> ;<br>EX 60 7CE3 <sup>3</sup><br>EX 60 /NS 7CE3 <sup>3</sup> |

Valido solo per cuscinetti aperti
 Per le denominazioni dei cuscinetti schermati e di altre varianti, fare riferimento alla tabella 16 alle pagine 34 e 35.
 Su richiesta, sono disponibili cuscinetti con gabbia in PEEK, suffisso nella denominazione TNHA (KE).



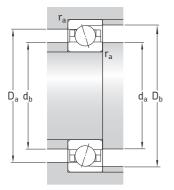


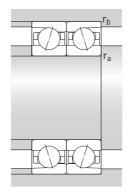

| Dimension | ni                                                           |                                                              |                                         |                                               |                                              | Dimensio<br>cuscinett                                        |                                                      | amento e del                                         | componente (                            | che accoglie il                                      |
|-----------|--------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------|-----------------------------------------------|----------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-----------------------------------------|------------------------------------------------------|
| d         | d <sub>1</sub> ~                                             | D <sub>1</sub>                                               | r <sub>1,2</sub><br>min                 | r <sub>3,4</sub><br>min                       | a                                            | d <sub>a</sub> , d <sub>b</sub><br>min                       | D <sub>a</sub><br>max                                | $D_b$ max                                            | r <sub>a</sub><br>max                   | r <sub>b</sub><br>max                                |
| mm        |                                                              |                                                              |                                         |                                               |                                              | mm                                                           |                                                      |                                                      |                                         |                                                      |
| 40        | 47,1<br>47,1<br>47,1<br>47,1<br>49,2<br>49,2<br>49,2<br>49,2 | 54,9<br>54,9<br>54,9<br>54,9<br>58,8<br>58,8<br>58,8<br>58,8 | 0,6<br>0,6<br>0,6<br>0,6<br>1<br>1<br>1 | 0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3 | 13<br>13<br>18<br>18<br>15<br>15<br>20<br>20 | 43,2<br>43,2<br>43,2<br>43,2<br>44,6<br>44,6<br>44,6         | 58,8<br>58,8<br>58,8<br>58,8<br>63,4<br>63,4<br>63,4 | 60,6<br>60,6<br>60,6<br>60,6<br>66<br>66<br>66       | 0,6<br>0,6<br>0,6<br>0,6<br>1<br>1<br>1 | 0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3 |
| 45        | 52,6<br>52,6<br>52,6<br>52,6<br>54,2<br>54,2<br>54,2<br>54,2 | 60,4<br>60,4<br>60,4<br>65,8<br>65,8<br>65,8<br>65,8         | 0,6<br>0,6<br>0,6<br>1<br>1<br>1        | 0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3 | 14<br>14<br>19<br>19<br>16<br>16<br>22<br>22 | 48,2<br>48,2<br>48,2<br>49,6<br>49,6<br>49,6<br>49,6         | 64,8<br>64,8<br>64,8<br>70,4<br>70,4<br>70,4<br>70,4 | 66,6<br>66,6<br>66,6<br>73<br>73<br>73<br>73         | 0,6<br>0,6<br>0,6<br>0,6<br>1<br>1<br>1 | 0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3 |
| 50        | 57,1<br>57,1<br>57,1<br>57,1<br>59,2<br>59,2<br>59,2<br>59,2 | 64,9<br>64,9<br>64,9<br>70,8<br>70,8<br>70,8<br>70,8         | 0,6<br>0,6<br>0,6<br>1<br>1<br>1        | 0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3 | 14<br>14<br>20<br>20<br>17<br>17<br>23<br>23 | 53,2<br>53,2<br>53,2<br>53,2<br>54,6<br>54,6<br>54,6<br>54,6 | 68,8<br>68,8<br>68,8<br>75,4<br>75,4<br>75,4<br>75,4 | 70,6<br>70,6<br>70,6<br>70,6<br>78<br>78<br>78       | 0,6<br>0,6<br>0,6<br>1<br>1<br>1        | 0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3<br>0,3 |
| 55        | 62,7<br>62,7<br>62,7<br>62,7<br>65,8<br>65,8<br>65,8         | 72,3<br>72,3<br>72,3<br>72,3<br>79,2<br>79,2<br>79,2<br>79,2 | 1<br>1<br>1<br>1,1<br>1,1<br>1,1<br>1,1 | 0,3<br>0,3<br>0,3<br>0,6<br>0,6<br>0,6        | 16<br>16<br>22<br>22<br>19<br>19<br>26<br>26 | 59,6<br>59,6<br>59,6<br>59,6<br>61<br>61<br>61               | 75,4<br>75,4<br>75,4<br>75,4<br>84<br>84<br>84       | 78<br>78<br>78<br>78<br>86,8<br>86,8<br>86,8<br>86,8 | 1<br>1<br>1<br>1<br>1<br>1<br>1         | 0,3<br>0,3<br>0,3<br>0,3<br>0,6<br>0,6<br>0,6        |
| 60        | 67,7<br>67,7<br>67,7<br>67,7<br>70,8<br>70,8<br>70,8<br>70,8 | 77,3<br>77,3<br>77,3<br>77,3<br>84,2<br>84,2<br>84,2<br>84,2 | 1<br>1<br>1<br>1,1<br>1,1<br>1,1<br>1,1 | 0,3<br>0,3<br>0,3<br>0,6<br>0,6<br>0,6<br>0,6 | 16<br>16<br>24<br>24<br>20<br>20<br>27<br>27 | 64,6<br>64,6<br>64,6<br>64,6<br>66<br>66<br>66               | 80,4<br>80,4<br>80,4<br>89,89<br>89                  | 83<br>83<br>83<br>91,8<br>91,8<br>91,8<br>91,8       | 1<br>1<br>1<br>1<br>1<br>1<br>1         | 0,3<br>0,3<br>0,3<br>0,3<br>0,6<br>0,6<br>0,6        |

## Cuscinetti obliqui a sfere Super-precision

## d **65 – 85** mm

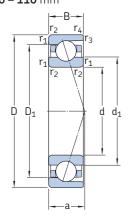






Versione aperta

Versione schermata per d = 10 a 150 mm

| <b>Dime</b> | n <b>sioni d'i</b><br>D                              | <b>ngombro</b><br>B                          | Coefficien<br>carico<br>dinamico<br>C                        |                                                          | Carico limite<br>di fatica<br>P <sub>u</sub>                 | Fattore di calcolo                          |                                                                              | <b>ammissibili</b><br>lubrificazione<br>olio-aria <sup>1)</sup>              | Massa <sup>1)</sup>                                          | <b>Denominazioni</b><br><b>di cuscinetti aperti</b> <sup>2)</sup><br>SKF                                                                                                                     | SNFA                                                                                                                                        |
|-------------|------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| mm          |                                                      |                                              | kN                                                           |                                                          | kN                                                           | _                                           | giri/min                                                                     |                                                                              | kg                                                           |                                                                                                                                                                                              |                                                                                                                                             |
| 65          | 90<br>90<br>90<br>90<br>100<br>100<br>100            | 13<br>13<br>13<br>13<br>18<br>18<br>18       | 20,8<br>20,8<br>19,5<br>19,5<br>41,6<br>41,6<br>39           | 17<br>17<br>16<br>16<br>37,5<br>37,5<br>35,5<br>35,5     | 0,71<br>0,71<br>0,68<br>0,68<br>1,6<br>1,5<br>1,5            | 10,7<br>10,7<br>-<br>-<br>15,6<br>15,6      | 14 000<br>17 000<br>13 000<br>15 000<br>14 000<br>16 000<br>12 000<br>15 000 | 22 000<br>26 000<br>20 000<br>24 000<br>22 000<br>24 000<br>19 000<br>22 000 | 0,21<br>0,17<br>0,21<br>0,17<br>0,42<br>0,36<br>0,42<br>0,36 | 71913 CD/P4A<br>71913 CD/HCP4A<br>71913 ACD/P4A<br>71913 ACD/HCP4A<br>7013 CD/P4A<br>7013 CD/HCP4A<br>7013 ACD/P4A<br>7013 ACD/HCP4A                                                         | SEB 65 7CE1<br>SEB 65 /NS 7CE3<br>SEB 65 7CE3<br>SEB 65 7CE3<br>SES 65 7CE1<br>EX 65 7CE1<br>EX 65 /NS 7CE1<br>EX 65 7CE3<br>EX 65 /NS 7CE3 |
| 70          | 100<br>100<br>100<br>100<br>110<br>110<br>110<br>110 | 16<br>16<br>16<br>16<br>20<br>20<br>20       | 34,5<br>34,5<br>32,5<br>32,5<br>52<br>52<br>48,8<br>48,8     | 34<br>34<br>32,5<br>32,5<br>45,5<br>45,5<br>44<br>44     | 1,43<br>1,43<br>1,37<br>1,37<br>1,93<br>1,93<br>1,86<br>1,86 | 16,2<br>16,2<br>-<br>-<br>15,5<br>15,5<br>- | 13 000<br>16 000<br>11 000<br>14 000<br>12 000<br>15 000<br>11 000<br>13 000 | 20 000<br>24 000<br>18 000<br>22 000<br>19 000<br>22 000<br>17 000<br>20 000 | 0,33<br>0,28<br>0,33<br>0,28<br>0,59<br>0,49<br>0,59<br>0,49 | 71914 CD/P4A<br>71914 CD/HCP4A<br>71914 ACD/P4A<br>71914 ACD/HCP4A<br>7014 CD/P4A <sup>3)</sup><br>7014 CD/HCP4A <sup>3)</sup><br>7014 ACD/P4A <sup>3)</sup><br>7014 ACD/HCP4A <sup>3)</sup> | SEB 70 7CE1<br>SEB 70 /NS 7CE3<br>SEB 70 7CE3<br>SEB 70 /NS 7CE3<br>EX 70 7CE13<br>EX 70 /NS 7CE13<br>EX 70 7CE33<br>EX 70 /NS 7CE33        |
| 75          | 105<br>105<br>105<br>105<br>115<br>115<br>115<br>115 | 16<br>16<br>16<br>16<br>20<br>20<br>20       | 35,8<br>35,8<br>33,8<br>33,8<br>52,7<br>52,7<br>49,4<br>49,4 | 37,5<br>37,5<br>35,5<br>35,5<br>49<br>49<br>46,5<br>46,5 | 1,56<br>1,56<br>1,5<br>1,5<br>2,08<br>2,08<br>1,96<br>1,96   | 16,3<br>16,3<br>-<br>-<br>15,7<br>15,7      | 12 000<br>15 000<br>10 000<br>13 000<br>11 000<br>14 000<br>10 000<br>13 000 | 19 000<br>22 000<br>17 000<br>20 000<br>18 000<br>22 000<br>16 000<br>20 000 | 0,35<br>0,30<br>0,35<br>0,30<br>0,62<br>0,52<br>0,62<br>0,52 | 71915 CD/P4A<br>71915 CD/HCP4A<br>71915 ACD/P4A<br>71915 ACD/HCP4A<br>7015 CD/P4A<br>7015 CD/HCP4A<br>7015 ACD/P4A<br>7015 ACD/HCP4A                                                         | SEB 75 7CE1<br>SEB 75 /NS 7CE2<br>SEB 75 7CE3<br>SEB 75 /NS 7CE3<br>EX 75 7CE1<br>EX 75 /NS 7CE1<br>EX 75 7CE3<br>EX 75 /NS 7CE3            |
| 80          | 110<br>110<br>110<br>110<br>125<br>125<br>125<br>125 | 16<br>16<br>16<br>16<br>22<br>22<br>22<br>22 | 36,4<br>36,4<br>34,5<br>34,5<br>65<br>65<br>62,4<br>62,4     | 39<br>39<br>36,5<br>36,5<br>61<br>61<br>58,5<br>58,5     | 1,66<br>1,66<br>1,56<br>1,56<br>2,55<br>2,55<br>2,45<br>2,45 | 16,5<br>16,5<br>-<br>15,5<br>15,5           | 11 000<br>15 000<br>9 500<br>12 000<br>10 000<br>13 000<br>9 500<br>12 000   | 18 000<br>22 000<br>16 000<br>19 000<br>17 000<br>20 000<br>15 000<br>18 000 | 0,37<br>0,31<br>0,37<br>0,31<br>0,85<br>0,71<br>0,85<br>0,71 | 71916 CD/P4A<br>71916 CD/HCP4A<br>71916 ACD/P4A<br>71916 ACD/HCP4A<br>7016 CD/P4A <sup>3)</sup><br>7016 CD/HCP4A <sup>3)</sup><br>7016 ACD/P4A <sup>3)</sup><br>7016 ACD/HCP4A <sup>3)</sup> | SEB 80 7CE1<br>SEB 80 /NS 7CE3<br>SEB 80 7CE3<br>SEB 80 /NS 7CE3<br>EX 80 7CE13)<br>EX 80 /NS 7CE13<br>EX 80 7CE33)<br>EX 80 /NS 7CE33      |
| 85          | 120<br>120<br>120<br>120<br>130<br>130<br>130<br>130 | 18<br>18<br>18<br>18<br>22<br>22<br>22<br>22 | 46,2<br>46,2<br>43,6<br>43,6<br>67,6<br>67,6<br>63,7<br>63,7 | 48<br>48,5<br>45,5<br>65,5<br>65,5<br>62<br>62           | 2,04<br>2,04<br>1,93<br>1,93<br>2,65<br>2,65<br>2,5<br>2,5   | 16,2<br>16,2<br>-<br>-<br>15,7<br>15,7<br>- | 10 000<br>14 000<br>9 000<br>11 000<br>10 000<br>12 000<br>9 000<br>11 000   | 17 000<br>20 000<br>15 000<br>18 000<br>16 000<br>19 000<br>14 000<br>17 000 | 0,53<br>0,44<br>0,53<br>0,44<br>0,89<br>0,74<br>0,89<br>0,74 | 71917 CD/P4A<br>71917 CD/HCP4A<br>71917 ACD/P4A<br>71917 ACD/HCP4A<br>7017 CD/P4A <sup>3)</sup><br>7017 CD/HCP4A <sup>3)</sup><br>7017 ACD/P4A <sup>3)</sup><br>7017 ACD/HCP4A <sup>3)</sup> | SEB 85 7CE1<br>SEB 85 /NS 7CE3<br>SEB 85 7CE3<br>SEB 85 /NS 7CE3<br>EX 85 7CE13<br>EX 85 /NS 7CE13<br>EX 85 7CE33<br>EX 85 /NS 7CE33        |


Valido solo per cuscinetti aperti
 Per le denominazioni dei cuscinetti schermati e di altre varianti, fare riferimento alla tabella 16 alle pagine 34 e 35.
 Su richiesta, sono disponibili cuscinetti con gabbia in PEEK, suffisso nella denominazione TNHA (KE).

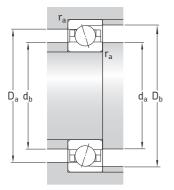


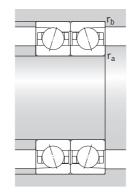


| Dimensi | oni                                                          |                                                                      |                                               |                                                      |                                                    | Dimensi<br>cuscinet                                  |                                                      | amento e del                                         | componente                      | che accoglie il                               |
|---------|--------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------|----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|---------------------------------|-----------------------------------------------|
| d       | d <sub>1</sub> ~                                             | D <sub>1</sub>                                                       | r <sub>1,2</sub><br>min                       | r <sub>3,4</sub><br>min                              | a                                                  | d <sub>a</sub> , d <sub>b</sub><br>min               | D <sub>a</sub><br>max                                | D <sub>b</sub><br>max                                | r <sub>a</sub><br>max           | r <sub>b</sub><br>max                         |
| mm      |                                                              |                                                                      |                                               |                                                      |                                                    | mm                                                   |                                                      |                                                      |                                 |                                               |
| 65      | 72,7<br>72,7<br>72,7<br>72,7<br>75,8<br>75,8<br>75,8<br>75,8 | 82,3<br>82,3<br>82,3<br>82,3<br>89,2<br>89,2<br>89,2<br>89,2         | 1<br>1<br>1<br>1,1<br>1,1<br>1,1<br>1,1       | 0,3<br>0,3<br>0,3<br>0,3<br>0,6<br>0,6<br>0,6<br>0,6 | 17<br>17<br>25<br>25<br>20<br>20<br>20<br>28<br>28 | 69,6<br>69,6<br>69,6<br>71<br>71<br>71<br>71         | 85,4<br>85,4<br>85,4<br>85,4<br>94<br>94<br>94       | 88<br>88<br>88<br>96,8<br>96,8<br>96,8<br>96,8       | 1<br>1<br>1<br>1<br>1<br>1<br>1 | 0,3<br>0,3<br>0,3<br>0,6<br>0,6<br>0,6<br>0,6 |
| 70      | 79,2<br>79,2<br>79,2<br>79,2<br>82,3<br>82,3<br>82,3<br>82,3 | 90,8<br>90,8<br>90,8<br>90,8<br>97,7<br>97,7<br>97,7                 | 1<br>1<br>1<br>1,1<br>1,1<br>1,1<br>1,1       | 0,3<br>0,3<br>0,3<br>0,6<br>0,6<br>0,6<br>0,6        | 19<br>19<br>28<br>28<br>22<br>22<br>31<br>31       | 74,6<br>74,6<br>74,6<br>74,6<br>76<br>76<br>76<br>76 | 95,4<br>95,4<br>95,4<br>95,4<br>104<br>104<br>104    | 98<br>98<br>98<br>98<br>106<br>106<br>106<br>106     | 1<br>1<br>1<br>1<br>1<br>1<br>1 | 0,3<br>0,3<br>0,3<br>0,6<br>0,6<br>0,6<br>0,6 |
| 75      | 84,2<br>84,2<br>84,2<br>84,2<br>87,3<br>87,3<br>87,3         | 95,8<br>95,8<br>95,8<br>95,8<br>102,7<br>102,7<br>102,7<br>102,7     | 1<br>1<br>1<br>1,1<br>1,1<br>1,1<br>1,1       | 0,3<br>0,3<br>0,3<br>0,6<br>0,6<br>0,6<br>0,6        | 20<br>20<br>29<br>29<br>23<br>23<br>32<br>32       | 79,6<br>79,6<br>79,6<br>79,6<br>81<br>81<br>81       | 100<br>100<br>100<br>100<br>109<br>109<br>109<br>109 | 103<br>103<br>103<br>103<br>111<br>111<br>111        | 1<br>1<br>1<br>1<br>1<br>1<br>1 | 0,3<br>0,3<br>0,3<br>0,6<br>0,6<br>0,6<br>0,6 |
| 80      | 89,2<br>89,2<br>89,2<br>89,2<br>93,9<br>93,9<br>93,9         | 100,8<br>100,8<br>100,8<br>100,8<br>111,1<br>111,1<br>111,1<br>111,1 | 1<br>1<br>1<br>1,1<br>1,1<br>1,1<br>1,1       | 0,3<br>0,3<br>0,3<br>0,6<br>0,6<br>0,6               | 21<br>21<br>30<br>30<br>25<br>25<br>35<br>35       | 84,6<br>84,6<br>84,6<br>84,6<br>86<br>86<br>86       | 105<br>105<br>105<br>105<br>119<br>119<br>119<br>119 | 108<br>108<br>108<br>108<br>121<br>121<br>121<br>121 | 1<br>1<br>1<br>1<br>1<br>1<br>1 | 0,3<br>0,3<br>0,3<br>0,6<br>0,6<br>0,6        |
| 85      | 95,8<br>95,8<br>95,8<br>95,8<br>98,9<br>98,9<br>98,9<br>98,9 | 109,2<br>109,2<br>109,2<br>109,2<br>116,1<br>116,1<br>116,1          | 1,1<br>1,1<br>1,1<br>1,1<br>1,1<br>1,1<br>1,1 | 0,6<br>0,6<br>0,6<br>0,6<br>0,6<br>0,6<br>0,6        | 23<br>23<br>33<br>33<br>26<br>26<br>26<br>36<br>36 | 91<br>91<br>91<br>91<br>91<br>91<br>91               | 114<br>114<br>114<br>114<br>124<br>124<br>124<br>124 | 116<br>116<br>116<br>116<br>126<br>126<br>126<br>126 | 1<br>1<br>1<br>1<br>1<br>1<br>1 | 0,6<br>0,6<br>0,6<br>0,6<br>0,6<br>0,6<br>0,6 |

## Cuscinetti obliqui a sfere Super-precision d **90 – 110** mm

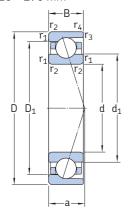






Versione aperta

Versione schermata per d = 10 a 150 mm

| <b>Dimer</b> | n <b>sioni d'i</b> n                                 | ngombro<br>B                                 | Coefficient<br>carico<br>dinamico<br>C                       |                                                    | Carico limite<br>di fatica                               | Fattore di calcolo                     |                                                                          | <b>ammissibili</b><br>lubrificazione<br>olio-aria <sup>1)</sup>              | Massa <sup>1)</sup>                                          | <b>Denominazioni</b><br><b>di cuscinetti aperti</b> <sup>2)</sup><br>SKF                                                                                                                                                                                   | SNFA                                                                                                                                                                                                                                      |
|--------------|------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mm           |                                                      |                                              | kN                                                           |                                                    | kN                                                       |                                        | giri/min                                                                 |                                                                              | kg                                                           | -                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                           |
| 90           | 125<br>125<br>125<br>125<br>140<br>140<br>140<br>140 | 18<br>18<br>18<br>18<br>24<br>24<br>24<br>24 | 47,5<br>47,5<br>44,2<br>44,2<br>79,3<br>79,3<br>74,1<br>74,1 | 51<br>51<br>48<br>48<br>76,5<br>76,5<br>72         | 2,08<br>2,08<br>1,96<br>1,96<br>3<br>3<br>2,85<br>2,85   | 16,3<br>16,3<br>-<br>-<br>15,6<br>15,6 | 9 500<br>13 000<br>8 500<br>10 000<br>9 000<br>11 000<br>8 500<br>10 000 | 16 000<br>19 000<br>14 000<br>17 000<br>15 000<br>18 000<br>13 000<br>16 000 | 0,55<br>0,47<br>0,55<br>0,47<br>1,15<br>0,95<br>1,15<br>0,95 | 71918 CD/P4A <sup>3)</sup> 71918 CD/HCP4A <sup>3)</sup> 71918 ACD/P4A <sup>3)</sup> 71918 ACD/HCP4A <sup>3)</sup> 7018 CD/P4A <sup>3)</sup> 7018 CD/HCP4A <sup>3)</sup> 7018 ACD/P4A <sup>3)</sup> 7018 ACD/P4A <sup>3)</sup> 7018 ACD/HCP4A <sup>3)</sup> | SEB 90 7CE1 <sup>3</sup> ) SEB 90 /NS 7CE1 <sup>3</sup> SEB 90 /NS 7CE3 <sup>3</sup> SEB 90 /NS 7CE3 <sup>3</sup> EX 90 /NS 7CE1 <sup>3</sup> ) EX 90 /NS 7CE1 <sup>3</sup> ) EX 90 /NS 7CE3 <sup>3</sup> ) EX 90 /NS 7CE3 <sup>3</sup> ) |
| 95           | 130<br>130<br>130<br>130<br>145<br>145<br>145<br>145 | 18<br>18<br>18<br>18<br>24<br>24<br>24<br>24 | 49,4<br>49,4<br>46,2<br>46,2<br>81,9<br>81,9<br>76,1<br>76,1 | 55<br>55<br>52<br>52<br>80<br>80<br>76,5<br>76,5   | 2,2<br>2,2<br>2,08<br>2,08<br>3,1<br>3,1<br>2,9<br>2,9   | 16,4<br>16,4<br>-<br>15,7<br>15,7      | 9 000<br>12 000<br>8 500<br>9 500<br>8 500<br>11 000<br>8 000<br>10 000  | 15 000<br>18 000<br>14 000<br>16 000<br>14 000<br>17 000<br>13 000<br>16 000 | 0,58<br>0,49<br>0,58<br>0,49<br>1,20<br>1,00<br>1,20<br>1,00 | 71919 CD/P4A<br>71919 CD/HCP4A<br>71919 ACD/P4A<br>71919 ACD/HCP4A<br>7019 CD/P4A<br>7019 CD/HCP4A<br>7019 ACD/P4A<br>7019 ACD/HCP4A                                                                                                                       | SEB 95 7CE1<br>SEB 95 /NS 7CE1<br>SEB 95 7CE3<br>SEB 95 /NS 7CE3<br>EX 95 7CE1<br>EX 95 /NS 7CE1<br>EX 95 /NS 7CE3<br>EX 95 /NS 7CE3                                                                                                      |
| 100          | 140<br>140<br>140<br>140<br>150<br>150<br>150        | 20<br>20<br>20<br>20<br>24<br>24<br>24<br>24 | 60,5<br>60,5<br>57,2<br>57,2<br>83,2<br>83,2<br>79,3<br>79,3 | 65,5<br>65,5<br>63<br>63<br>85<br>85<br>80<br>80   | 2,55<br>2,55<br>2,4<br>2,4<br>3,2<br>3,2<br>3,05<br>3,05 | 16,3<br>16,3<br>-<br>-<br>15,8<br>15,8 | 8 500<br>11 000<br>8 000<br>9 000<br>8 500<br>10 000<br>8 000<br>9 500   | 14 000<br>17 000<br>13 000<br>15 000<br>14 000<br>16 000<br>12 000<br>15 000 | 0,80<br>0,66<br>0,80<br>0,66<br>1,25<br>1,05<br>1,25<br>1,05 | 71920 CD/P4A<br>71920 CD/HCP4A<br>71920 ACD/P4A<br>71920 ACD/HCP4A<br>7020 CD/P4A <sup>3)</sup><br>7020 CD/HCP4A <sup>3)</sup><br>7020 ACD/P4A <sup>3)</sup><br>7020 ACD/HCP4A <sup>3)</sup>                                                               | SEB 100 7CE1<br>SEB 100 /NS 7CE3<br>SEB 100 7CE3<br>SEB 100 /NS 7CE3<br>EX 100 7CE13)<br>EX 100 /NS 7CE13<br>EX 100 7CE33)<br>EX 100 /NS 7CE33                                                                                            |
| 105          | 145<br>145<br>145<br>145<br>160<br>160<br>160        | 20<br>20<br>20<br>20<br>26<br>26<br>26<br>26 | 61,8<br>61,8<br>57,2<br>57,2<br>95,6<br>95,6<br>90,4<br>90,4 | 69,5<br>69,5<br>65,5<br>65,5<br>96,5<br>96,5<br>93 | 2,6<br>2,6<br>2,5<br>2,5<br>3,6<br>3,6<br>3,4<br>3,4     | 16,4<br>16,4<br>-<br>15,7<br>15,7      | 8 500<br>10 000<br>7 500<br>9 000<br>8 000<br>10 000<br>7 500<br>9 000   | 14 000<br>16 000<br>12 000<br>15 000<br>13 000<br>15 000<br>12 000<br>14 000 | 0,82<br>0,69<br>0,82<br>0,69<br>1,60<br>1,35<br>1,60<br>1,35 | 71921 CD/P4A<br>71921 CD/HCP4A<br>71921 ACD/P4A<br>71921 ACD/HCP4A<br>7021 CD/P4A<br>7021 CD/HCP4A<br>7021 ACD/P4A<br>7021 ACD/HCP4A                                                                                                                       | SEB 105 7CE1 SEB 105 /NS 7CE3 SEB 105 7CE3 SEB 105 7CE3 SEX 105 7CE1 EX 105 /NS 7CE1 EX 105 7CE3 EX 105 7CE3 EX 105 /NS 7CE3                                                                                                              |
| 110          | 150<br>150<br>150<br>150<br>170<br>170<br>170<br>170 | 20<br>20<br>20<br>20<br>28<br>28<br>28<br>28 | 62,4<br>62,4<br>58,5<br>58,5<br>111<br>111<br>104<br>104     | 72<br>72<br>68<br>68<br>108<br>108<br>104<br>104   | 2,7<br>2,7<br>2,55<br>2,55<br>3,9<br>3,9<br>3,75<br>3,75 | 16,5<br>16,5<br>-<br>15,5<br>15,5<br>- | 8 000<br>10 000<br>7 500<br>8 500<br>7 500<br>9 500<br>7 000<br>8 500    | 13 000<br>16 000<br>12 000<br>14 000<br>12 000<br>14 000<br>11 000<br>13 000 | 0,86<br>0,72<br>0,86<br>0,72<br>1,95<br>1,60<br>1,95<br>1,60 | 71922 CD/P4A <sup>3)</sup> 71922 CD/HCP4A <sup>3)</sup> 71922 ACD/P4A <sup>3)</sup> 71922 ACD/HCP4A <sup>3)</sup> 7022 CD/P4A 7022 CD/P4A 7022 ACD/P4A 7022 ACD/P4A 7022 ACD/P4A                                                                           | SEB 110 7CE1 <sup>3)</sup> SEB 110 /NS 7CE1 SEB 110 7CE3 <sup>3)</sup> SEB 110 /NS 7CE3 EX 110 7CE1 EX 110 /NS 7CE1 EX 110 7CE3 EX 110 /NS 7CE3                                                                                           |


Valido solo per cuscinetti aperti
 Per le denominazioni dei cuscinetti schermati e di altre varianti, fare riferimento alla tabella 16 alle pagine 34 e 35.
 Su richiesta, sono disponibili cuscinetti con gabbia in PEEK, suffisso nella denominazione TNHA (KE).

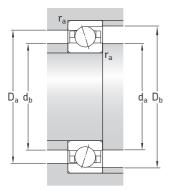


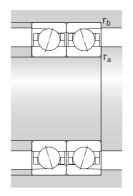


| Dimensi | oni                                                                  |                                                                      |                                               |                                         |                                              | Dimension cuscinet                                   |                                                      | amento e del                                         | componente (                         | che accoglie il                  |
|---------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------|----------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------|----------------------------------|
| d       | d <sub>1</sub><br>~                                                  | D <sub>1</sub>                                                       | r <sub>1,2</sub><br>min                       | r <sub>3,4</sub><br>min                 | a                                            | d <sub>a</sub> , d <sub>b</sub><br>min               | D <sub>a</sub><br>max                                | D <sub>b</sub><br>max                                | r <sub>a</sub><br>max                | r <sub>b</sub><br>max            |
| mm      |                                                                      |                                                                      |                                               |                                         |                                              | mm                                                   |                                                      |                                                      |                                      |                                  |
| 90      | 100,8<br>100,8<br>100,8<br>100,8<br>105,4<br>105,4<br>105,4<br>105,4 | 114,2<br>114,2<br>114,2<br>114,2<br>124,6<br>124,6<br>124,6<br>124,6 | 1,1<br>1,1<br>1,1<br>1,1<br>1,5<br>1,5<br>1,5 | 0,6<br>0,6<br>0,6<br>0,6<br>1<br>1      | 23<br>23<br>34<br>34<br>28<br>28<br>39<br>39 | 96<br>96<br>96<br>97<br>97<br>97<br>97               | 119<br>119<br>119<br>119<br>133<br>133<br>133<br>133 | 121<br>121<br>121<br>121<br>136<br>136<br>136<br>136 | 1<br>1<br>1<br>1,5<br>1,5<br>1,5     | 0,6<br>0,6<br>0,6<br>1<br>1<br>1 |
| 95      | 105,8<br>105,8<br>105,8<br>105,8<br>110,4<br>110,4<br>110,4<br>110,4 | 119,2<br>119,2<br>119,2<br>119,2<br>129,6<br>129,6<br>129,6<br>129,6 | 1,1<br>1,1<br>1,1<br>1,5<br>1,5<br>1,5<br>1,5 | 0,6<br>0,6<br>0,6<br>1<br>1<br>1        | 24<br>24<br>35<br>35<br>28<br>28<br>40<br>40 | 101<br>101<br>101<br>101<br>102<br>102<br>102<br>102 | 124<br>124<br>124<br>124<br>138<br>138<br>138<br>138 | 126<br>126<br>126<br>126<br>141<br>141<br>141<br>141 | 1<br>1<br>1<br>1,5<br>1,5<br>1,5     | 0,6<br>0,6<br>0,6<br>1<br>1<br>1 |
| 100     | 112,3<br>112,3<br>112,3<br>112,3<br>115,4<br>115,4<br>115,4<br>115,4 | 127,7<br>127,7<br>127,7<br>127,7<br>134,6<br>134,6<br>134,6          | 1,1<br>1,1<br>1,1<br>1,5<br>1,5<br>1,5<br>1,5 | 0,6<br>0,6<br>0,6<br>1<br>1<br>1        | 26<br>26<br>38<br>38<br>29<br>29<br>41<br>41 | 106<br>106<br>106<br>106<br>107<br>107<br>107        | 134<br>134<br>134<br>134<br>143<br>143<br>143<br>143 | 136<br>136<br>136<br>136<br>146<br>146<br>146<br>146 | 1<br>1<br>1<br>1,5<br>1,5<br>1,5     | 0,6<br>0,6<br>0,6<br>1<br>1<br>1 |
| 105     | 117,3<br>117,3<br>117,3<br>117,3<br>121,9<br>121,9<br>121,9<br>121,9 | 132,7<br>132,7<br>132,7<br>132,7<br>143,1<br>143,1<br>143,1<br>143,1 | 1,1<br>1,1<br>1,1<br>2<br>2<br>2<br>2         | 0,6<br>0,6<br>0,6<br>0,6<br>1<br>1<br>1 | 27<br>27<br>39<br>39<br>31<br>31<br>44       | 111<br>111<br>111<br>111<br>114<br>114<br>114<br>114 | 139<br>139<br>139<br>139<br>151<br>151<br>151        | 141<br>141<br>141<br>141<br>155<br>155<br>155        | 1<br>1<br>1<br>2<br>2<br>2<br>2      | 0,6<br>0,6<br>0,6<br>1<br>1<br>1 |
| 110     | 122,3<br>122,3<br>122,3<br>122,3<br>128,5<br>128,5<br>128,5<br>128,5 | 137,7<br>137,7<br>137,7<br>137,7<br>151,5<br>151,5<br>151,5          | 1,1<br>1,1<br>1,1<br>2<br>2<br>2<br>2         | 0,6<br>0,6<br>0,6<br>1<br>1<br>1        | 27<br>27<br>40<br>40<br>33<br>33<br>47<br>47 | 116<br>116<br>116<br>116<br>119<br>119<br>119<br>119 | 144<br>144<br>144<br>161<br>161<br>161<br>161        | 146<br>146<br>146<br>146<br>165<br>165<br>165        | 1<br>1<br>1<br>1<br>2<br>2<br>2<br>2 | 0,6<br>0,6<br>0,6<br>1<br>1<br>1 |

## Cuscinetti obliqui a sfere Super-precision d **120 – 170** mm

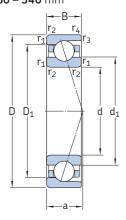






Versione aperta

Versione schermata per d = 10 a 150 mm

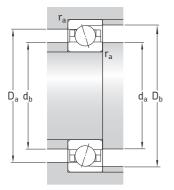
|     |                                               | ngombro                                            | Coefficie<br>carico<br>dinamico                      | statico                                                  | Carico limite<br>di fatica                        | Fattore di<br>calcolo                       |                                                                      | <b>ammissibili</b><br>lubrificazione                                         | Massa <sup>1)</sup>                                          | Denominazioni<br>di cuscinetti aperti <sup>2)</sup><br>SKF                                                                                 | SNFA                                                                                                                                                     |
|-----|-----------------------------------------------|----------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| d   | D                                             | В                                                  | С                                                    | $C_0$                                                    | $P_u$                                             | $f_0$                                       | grasso                                                               | olio-aria <sup>1)</sup>                                                      |                                                              |                                                                                                                                            |                                                                                                                                                          |
| mm  |                                               |                                                    | kN                                                   |                                                          | kN                                                | _                                           | giri/min                                                             |                                                                              | kg                                                           | _                                                                                                                                          |                                                                                                                                                          |
| 120 | 165<br>165<br>165<br>165<br>180<br>180<br>180 | 22<br>22<br>22<br>22<br>22<br>28<br>28<br>28<br>28 | 78<br>78<br>72,8<br>72,8<br>114<br>114<br>111<br>111 | 91,5<br>91,5<br>86,5<br>86,5<br>122<br>122<br>116<br>116 | 3,25<br>3,25<br>3,05<br>3,05<br>4,25<br>4,25<br>4 | 16,5<br>16,5<br>-<br>-<br>15,7<br>15,7<br>- | 7 500<br>9 000<br>7 000<br>8 000<br>7 000<br>8 500<br>6 700<br>8 000 | 12 000<br>14 000<br>11 000<br>13 000<br>11 000<br>13 000<br>10 000<br>12 000 | 1,15<br>0,97<br>1,15<br>0,97<br>2,10<br>1,75<br>2,10<br>1,75 | 71924 CD/P4A<br>71924 CD/HCP4A<br>71924 ACD/P4A<br>71924 ACD/HCP4A<br>7024 CD/P4A<br>7024 CD/HCP4A<br>7024 ACD/P4A<br>7024 ACD/HCP4A       | SEB 120 7CE1<br>SEB 120 /NS 7CE1<br>SEB 120 /NS 7CE3<br>SEB 120 /NS 7CE3<br>EX 120 7CE1<br>EX 120 7CE1<br>EX 120 7CE3<br>EX 120 /NS 7CE3                 |
| 130 | 180<br>180<br>180<br>180<br>200<br>200        | 24<br>24<br>24<br>24<br>33<br>33                   | 92,3<br>92,3<br>87,1<br>87,1<br>148<br>140           | 108<br>108<br>102<br>102<br>156<br>150                   | 3,65<br>3,65<br>3,45<br>3,45<br>5,2<br>4,9        | 16,4<br>16,4<br>-<br>-<br>15,6              | 7 000<br>8 500<br>6 700<br>7 500<br>7 000<br>6 000                   | 11 000<br>13 000<br>10 000<br>12 000<br>10 000<br>9 000                      | 1,55<br>1,30<br>1,55<br>1,30<br>3,20<br>3,20                 | 71926 CD/P4A <sup>3)</sup> 71926 CD/HCP4A <sup>3)</sup> 71926 ACD/P4A <sup>3)</sup> 71926 ACD/HCP4A <sup>3)</sup> 7026 CD/P4A 7026 ACD/P4A | SEB 130 7CE1 <sup>3)</sup><br>SEB 130 /NS 7CE1 <sup>3</sup><br>SEB 130 7CE3 <sup>3)</sup><br>SEB 130 /NS 7CE3 <sup>3</sup><br>EX 130 7CE1<br>EX 130 7CE3 |
| 140 | 190<br>190<br>190<br>190<br>210<br>210        | 24<br>24<br>24<br>24<br>33<br>33                   | 95,6<br>95,6<br>90,4<br>90,4<br>153<br>146           | 116<br>116<br>110<br>110<br>166<br>156                   | 3,9<br>3,9<br>3,65<br>3,65<br>5,3<br>5,1          | 16,6<br>16,6<br>-<br>-<br>15,8              | 6 700<br>8 000<br>6 000<br>7 000<br>6 700<br>5 600                   | 10 000<br>12 000<br>9 000<br>11 000<br>10 000<br>8 500                       | 1,65<br>1,35<br>1,65<br>1,35<br>3,40<br>3,40                 | 71928 CD/P4A<br>71928 CD/HCP4A<br>71928 ACD/P4A<br>71928 ACD/HCP4A<br>7028 CD/P4A<br>7028 ACD/P4A                                          | SEB 140 7CE1<br>SEB 140 /NS 7CE1<br>SEB 140 7CE3<br>SEB 140 /NS 7CE3<br>EX 140 7CE1<br>EX 140 7CE3                                                       |
| 150 | 210<br>210<br>210<br>210<br>225<br>225        | 28<br>28<br>28<br>28<br>28<br>35<br>35             | 125<br>125<br>119<br>119<br>172<br>163               | 146<br>146<br>140<br>140<br>190<br>180                   | 4,75<br>4,75<br>4,5<br>4,5<br>5,85<br>5,6         | 16,2<br>16,2<br>-<br>-<br>15,8              | 6 300<br>7 500<br>5 600<br>6 700<br>6 000<br>5 300                   | 9 500<br>11 000<br>8 500<br>10 000<br>9 000<br>8 000                         | 2,55<br>2,10<br>2,55<br>2,10<br>4,15<br>4,15                 | 71930 CD/P4A <sup>3)</sup> 71930 CD/HCP4A <sup>3)</sup> 71930 ACD/P4A <sup>3)</sup> 71930 ACD/HCP4A <sup>3)</sup> 7030 CD/P4A 7030 ACD/P4A | SEB 150 7CE1 <sup>3)</sup> SEB 150 /NS 7CE1 <sup>3</sup> SEB 150 7CE3 <sup>3)</sup> SEB 150 /NS 7CE3 <sup>3</sup> EX 150 7CE1 EX 150 7CE3                |
| 160 | 220<br>220<br>220<br>220<br>240<br>240        | 28<br>28<br>28<br>28<br>28<br>38                   | 130<br>130<br>124<br>124<br>195<br>182               | 160<br>160<br>153<br>153<br>216<br>204                   | 5<br>4,75<br>4,75<br>6,55<br>6,2                  | 16,4<br>16,4<br>-<br>-<br>15,8              | 6 000<br>7 500<br>5 300<br>6 300<br>5 600<br>5 000                   | 9 000<br>11 000<br>8 000<br>9 500<br>8 500<br>7 500                          | 2,70<br>2,25<br>2,70<br>2,25<br>5,10<br>5,10                 | 71932 CD/P4A<br>71932 CD/HCP4A<br>71932 ACD/P4A<br>71932 ACD/HCP4A<br>7032 CD/P4A<br>7032 ACD/P4A                                          | SEB 160 7CE1<br>SEB 160 /NS 7CE1<br>SEB 160 7CE3<br>SEB 160 /NS 7CE3<br>EX 160 7CE1<br>EX 160 7CE3                                                       |
| 170 | 230<br>230<br>230<br>230<br>260<br>260        | 28<br>28<br>28<br>28<br>42<br>42                   | 133<br>133<br>124<br>124<br>212<br>199               | 166<br>166<br>160<br>160<br>245<br>232                   | 5,1<br>5,1<br>4,8<br>4,8<br>7,1<br>6,7            | 16,5<br>16,5<br>-<br>-<br>15,9              | 5 600<br>7 000<br>5 000<br>6 000<br>5 300<br>4 800                   | 8 500<br>10 000<br>7 500<br>9 000<br>8 000<br>7 000                          | 2,85<br>2,35<br>2,85<br>2,35<br>6,85<br>6,85                 | 71934 CD/P4A<br>71934 CD/HCP4A<br>71934 ACD/P4A<br>71934 ACD/HCP4A<br>7034 CD/P4A<br>7034 ACD/P4A                                          | SEB 170 7CE1<br>SEB 170 /NS 7CE1<br>SEB 170 7CE3<br>SEB 170 /NS 7CE3<br>EX 170 7CE1<br>EX 170 7CE3                                                       |


Valido solo per cuscinetti aperti
 Per le denominazioni dei cuscinetti schermati e di altre varianti, fare riferimento alla tabella 16 alle pagine 34 e 35.
 Su richiesta, sono disponibili cuscinetti con gabbia in PEEK, suffisso nella denominazione TNHA (KE).





| Dimensio | oni                                                         |                                                                      |                                         |                                  |                                        | Dimensio<br>cuscinet                                 |                                                      | amento e del                                         | componente (                       | che accoglie il                  |
|----------|-------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------|----------------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------|----------------------------------|
| d        | d <sub>1</sub> ~                                            | D <sub>1</sub> ~                                                     | r <sub>1,2</sub><br>min                 | r <sub>3,4</sub><br>min          | a                                      | d <sub>a</sub> , d <sub>b</sub><br>min               | D <sub>a</sub><br>max                                | D <sub>b</sub><br>max                                | r <sub>a</sub><br>max              | r <sub>b</sub><br>max            |
| mm       |                                                             |                                                                      |                                         |                                  |                                        | mm                                                   |                                                      |                                                      |                                    |                                  |
| 120      | 133,9<br>133,9<br>133,9<br>133,9<br>138,5<br>138,5<br>138,5 | 151,1<br>151,1<br>151,1<br>151,1<br>161,5<br>161,5<br>161,5<br>161,5 | 1,1<br>1,1<br>1,1<br>1,1<br>2<br>2<br>2 | 0,6<br>0,6<br>0,6<br>1<br>1<br>1 | 30<br>30<br>44<br>44<br>34<br>34<br>49 | 126<br>126<br>126<br>126<br>129<br>129<br>129<br>129 | 159<br>159<br>159<br>159<br>171<br>171<br>171<br>171 | 161<br>161<br>161<br>161<br>175<br>175<br>175<br>175 | 1<br>1<br>1<br>2<br>2<br>2<br>2    | 0,6<br>0,6<br>0,6<br>1<br>1<br>1 |
| 130      | 145,4<br>145,4<br>145,4<br>145,4<br>151,6                   | 164,6<br>164,6<br>164,6<br>178,4<br>178,4                            | 1,5<br>1,5<br>1,5<br>1,5<br>2<br>2      | 0,6<br>0,6<br>0,6<br>0,6<br>1    | 33<br>33<br>48<br>48<br>39<br>55       | 137<br>137<br>137<br>137<br>139<br>139               | 173<br>173<br>173<br>173<br>173<br>191               | 176<br>176<br>176<br>176<br>195<br>195               | 1,5<br>1,5<br>1,5<br>1,5<br>2<br>2 | 0,6<br>0,6<br>0,6<br>0,6<br>1    |
| 140      | 155,4<br>155,4<br>155,4<br>155,4<br>161,6<br>161,6          | 174,6<br>174,6<br>174,6<br>174,6<br>188,4<br>188,4                   | 1,5<br>1,5<br>1,5<br>1,5<br>2<br>2      | 0,6<br>0,6<br>0,6<br>0,6<br>1    | 34<br>34<br>51<br>51<br>40<br>58       | 147<br>147<br>147<br>147<br>149<br>149               | 183<br>183<br>183<br>183<br>201<br>201               | 186<br>186<br>186<br>186<br>205<br>205               | 1,5<br>1,5<br>1,5<br>1,5<br>2<br>2 | 0,6<br>0,6<br>0,6<br>0,6<br>1    |
| 150      | 168,5<br>168,5<br>168,5<br>168,5<br>173,1<br>173,1          | 191,5<br>191,5<br>191,5<br>191,5<br>201,9<br>201,9                   | 2<br>2<br>2<br>2<br>2,1<br>2,1          | 1<br>1<br>1<br>1<br>1            | 38<br>38<br>56<br>56<br>43<br>62       | 159<br>159<br>159<br>159<br>161<br>161               | 201<br>201<br>201<br>201<br>214<br>214               | 205<br>205<br>205<br>205<br>205<br>220<br>220        | 2<br>2<br>2<br>2<br>2<br>2<br>2    | 1<br>1<br>1<br>1<br>1            |
| 160      | 178,5<br>178,5<br>178,5<br>178,5<br>184,7<br>184,7          | 201,5<br>201,5<br>201,5<br>201,5<br>215,3<br>215,3                   | 2<br>2<br>2<br>2<br>2,1<br>2,1          | 1<br>1<br>1<br>1<br>1            | 40<br>40<br>58<br>58<br>46<br>66       | 169<br>169<br>169<br>169<br>171<br>171               | 211<br>211<br>211<br>211<br>229<br>229               | 215<br>215<br>215<br>215<br>215<br>235<br>235        | 2<br>2<br>2<br>2<br>2<br>2<br>2    | 1<br>1<br>1<br>1<br>1            |
| 170      | 188,5<br>188,5<br>188,5<br>188,5<br>198,7<br>198,7          | 211,5<br>211,5<br>211,5<br>211,5<br>231,3<br>231,3                   | 2<br>2<br>2<br>2<br>2,1<br>2,1          | 1<br>1<br>1<br>1<br>1,1<br>1,1   | 41<br>41<br>61<br>61<br>50<br>71       | 179<br>179<br>179<br>179<br>181<br>181               | 221<br>221<br>221<br>221<br>249<br>249               | 225<br>225<br>225<br>225<br>254<br>254               | 2<br>2<br>2<br>2<br>2<br>2<br>2    | 1<br>1<br>1<br>1<br>1            |


## Cuscinetti obliqui a sfere Super-precision d $180-340 \ \text{mm}$



Versione aperta

| <b>Dimer</b><br>d | n <b>sioni d'i</b> n<br>D | n <b>gombro</b><br>B | <b>Coefficie</b><br><b>carico</b><br>dinamico<br>C |                          | Carico limite<br>di fatica<br>P <sub>u</sub> | Fattore di calcolo |                                  | <b>ammissibili</b><br>Iubrificazione<br>olio-aria <sup>1)</sup> | Massa <sup>1)</sup>          | <b>Denominazioni</b><br><b>di cuscinetti aperti</b> <sup>2)</sup><br>SKF | SNFA                                                       |
|-------------------|---------------------------|----------------------|----------------------------------------------------|--------------------------|----------------------------------------------|--------------------|----------------------------------|-----------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------|
| mm                |                           |                      | kN                                                 |                          | kN                                           | _                  | giri/min                         |                                                                 | kg                           | _                                                                        |                                                            |
| 180               | 250<br>250<br>280<br>280  | 33<br>33<br>46<br>46 | 168<br>159<br>242<br>229                           | 212<br>200<br>290<br>275 | 6,1<br>5,85<br>8,15<br>7,65                  | 16,3<br>-<br>15,7  | 5 300<br>4 800<br>5 000<br>4 300 | 8 000<br>7 000<br>7 500<br>6 300                                | 4,20<br>4,20<br>8,90<br>8,90 | 71936 CD/P4A<br>71936 ACD/P4A<br>7036 CD/P4A<br>7036 ACD/P4A             | SEB 180 7CE3<br>SEB 180 7CE3<br>EX 180 7CE1<br>EX 180 7CE3 |
| 190               | 260<br>260<br>290<br>290  | 33<br>33<br>46<br>46 | 172<br>163<br>247<br>234                           | 220<br>208<br>305<br>290 | 6,2<br>5,85<br>8,3<br>8                      | 16,4<br>-<br>15,9  | 5 000<br>4 500<br>4 800<br>4 300 | 7 500<br>6 700<br>7 000<br>6 300                                | 4,35<br>4,35<br>9,35<br>9,35 | 71938 CD/P4A<br>71938 ACD/P4A<br>7038 CD/P4A<br>7038 ACD/P4A             | SEB 190 7CE3<br>SEB 190 7CE3<br>EX 190 7CE1<br>EX 190 7CE3 |
| 200               | 280                       | 38                   | 208                                                | 265                      | 7,2                                          | 16,3               | 4 800                            | 7 000                                                           | 6,10                         | 71940 CD/P4A                                                             | SEB 200 7CE3                                               |
|                   | 280                       | 38                   | 199                                                | 250                      | 6,8                                          | -                  | 4 300                            | 6 300                                                           | 6,10                         | 71940 ACD/P4A                                                            | SEB 200 7CE3                                               |
|                   | 310                       | 51                   | 296                                                | 390                      | 10,2                                         | 15,6               | 4 500                            | 6 700                                                           | 12,0                         | 7040 CD/P4A                                                              | EX 200 7CE1                                                |
|                   | 310                       | 51                   | 281                                                | 365                      | 9,8                                          | -                  | 4 000                            | 6 000                                                           | 12,0                         | 7040 ACD/P4A                                                             | EX 200 7CE3                                                |
| 220               | 300                       | 38                   | 221                                                | 300                      | 7,8                                          | 16,5               | 4 300                            | 6 300                                                           | 6,60                         | 71944 CD/P4A                                                             | SEB 220 7CE3                                               |
|                   | 300                       | 38                   | 208                                                | 285                      | 7,5                                          | -                  | 3 800                            | 5 600                                                           | 6,60                         | 71944 ACD/P4A                                                            | SEB 220 7CE3                                               |
|                   | 340                       | 56                   | 338                                                | 455                      | 11,6                                         | 15,6               | 4 000                            | 6 000                                                           | 16,0                         | 7044 CD/P4A                                                              | EX 220 7CE1                                                |
|                   | 340                       | 56                   | 319                                                | 440                      | 11                                           | -                  | 3 600                            | 5 300                                                           | 16,0                         | 7044 ACD/P4A                                                             | EX 220 7CE3                                                |
| 240               | 320                       | 38                   | 229                                                | 325                      | 8,15                                         | 16,7               | 3 800                            | 5 600                                                           | 7,20                         | 71948 CD/P4A                                                             | SEB 240 7CE1                                               |
|                   | 320                       | 38                   | 216                                                | 305                      | 7,8                                          | -                  | 3 200                            | 4 800                                                           | 7,20                         | 71948 ACD/P4A                                                            | SEB 240 7CE1                                               |
|                   | 360                       | 56                   | 345                                                | 490                      | 12                                           | 15,8               | 3 800                            | 5 600                                                           | 17,0                         | 7048 CD/P4A                                                              | EX 240 7CE1                                                |
|                   | 360                       | 56                   | 325                                                | 465                      | 11,4                                         | -                  | 3 400                            | 5 000                                                           | 17,0                         | 7048 ACD/P4A                                                             | EX 240 7CE3                                                |
| 260               | 360                       | 46                   | 281                                                | 425                      | 10,2                                         | 16,5               | 3 400                            | 5 000                                                           | 12,0                         | 71952 CD/P4A                                                             | SEB 260 7CE3                                               |
|                   | 360                       | 46                   | 265                                                | 400                      | 9,65                                         | -                  | 2 800                            | 4 300                                                           | 12,0                         | 71952 ACD/P4A                                                            | SEB 260 7CE3                                               |
| 280               | 380<br>380                | 46<br>46             | 291<br>276                                         | 455<br>430               | 10,6<br>10                                   | 16,7<br>-          | 3 200<br>2 600                   | 4 800<br>4 000                                                  | 13,0<br>13,0                 | 71956 CD/P4A<br>71956 ACD/P4A                                            | SEB 280 7CE3                                               |
| 800               | 420                       | 56                   | 371                                                | 600                      | 13,4                                         | 16,3               | 2 400                            | 3 600                                                           | 23,0                         | 71960 CDMA/P4A                                                           | SEB 300 7LE3                                               |
|                   | 420                       | 56                   | 351                                                | 560                      | 12,7                                         | -                  | 2 200                            | 3 400                                                           | 23,0                         | 71960 ACDMA/P4A                                                          | SEB 300 7LE3                                               |
| 320               | 440                       | 56                   | 377                                                | 620                      | 13,7                                         | 16,5               | 2 200                            | 3 400                                                           | 24,0                         | 71964 CDMA/P4A                                                           | SEB 320 7LE3                                               |
|                   | 440                       | 56                   | 351                                                | 585                      | 12,9                                         | -                  | 2 000                            | 3 200                                                           | 24,0                         | 71964 ACDMA/P4A                                                          | SEB 320 7LE3                                               |
| 340               | 460                       | 56                   | 390                                                | 670                      | 14,3                                         | 17                 | 2 000                            | 3 200                                                           | 25,5                         | 71968 CDMA/P4A                                                           | SEB 340 7LE3                                               |
|                   | 460                       | 56                   | 364                                                | 640                      | 13,4                                         | -                  | 1 900                            | 3 000                                                           | 25,5                         | 71968 ACDMA/P4A                                                          | SEB 340 7LE3                                               |
| 360               | 480                       | 56                   | 397                                                | 710                      | 14,6                                         | 16,5               | 1 900                            | 3 000                                                           | 26,7                         | 71972 CDMA/P4A                                                           | SEB 360 7LE3                                               |
|                   | 480                       | 56                   | 371                                                | 670                      | 13,7                                         | -                  | 1 800                            | 2 800                                                           | 26,7                         | 71972 ACDMA/P4A                                                          | SEB 360 7LE3                                               |

<sup>1)</sup> Per le denominazioni di altre versioni, fare riferimento alla **tabella 16** alle **pagine 34** e **35**.





| Dimensioni |                                  |                                  |                          | Dimensioni dello spallamento e del componente che accoglie il cuscinetto |                      |                                        |                          |                          |                       |                       |
|------------|----------------------------------|----------------------------------|--------------------------|--------------------------------------------------------------------------|----------------------|----------------------------------------|--------------------------|--------------------------|-----------------------|-----------------------|
| d          | d <sub>1</sub> ~                 | D <sub>1</sub> ~                 | r <sub>1,2</sub><br>min  | r <sub>3,4</sub><br>min                                                  | a                    | d <sub>a</sub> , d <sub>b</sub><br>min | D <sub>a</sub><br>max    | D <sub>b</sub><br>max    | r <sub>a</sub><br>max | r <sub>b</sub><br>max |
| mm         |                                  |                                  |                          |                                                                          |                      | mm                                     |                          |                          |                       |                       |
| 180        | 201,6<br>201,6<br>211,8<br>211,8 | 228,4<br>228,4<br>248,2<br>248,2 | 2<br>2<br>2,1<br>2,1     | 1<br>1<br>1,1<br>1,1                                                     | 45<br>67<br>54<br>77 | 189<br>189<br>191<br>191               | 241<br>241<br>269<br>269 | 245<br>245<br>274<br>274 | 2<br>2<br>2<br>2      | 1<br>1<br>1           |
| 190        | 211,6                            | 238,4                            | 2                        | 1                                                                        | 47                   | 199                                    | 251                      | 255                      | 2                     | 1                     |
|            | 211,6                            | 238,4                            | 2                        | 1                                                                        | 69                   | 199                                    | 251                      | 255                      | 2                     | 1                     |
|            | 221,8                            | 258,2                            | 2,1                      | 1,1                                                                      | 55                   | 201                                    | 279                      | 284                      | 2                     | 1                     |
|            | 221,8                            | 258,2                            | 2,1                      | 1,1                                                                      | 79                   | 201                                    | 279                      | 284                      | 2                     | 1                     |
| 200        | 224,7<br>224,7<br>233,9<br>233,9 | 255,3<br>255,3<br>276,1<br>276,1 | 2,1<br>2,1<br>2,1<br>2,1 | 1<br>1<br>1,1<br>1,1                                                     | 51<br>75<br>60<br>85 | 209<br>209<br>211<br>211               | 271<br>271<br>299<br>299 | 275<br>275<br>304<br>304 | 2<br>2<br>2<br>2      | 1<br>1<br>1           |
| 220        | 244,7                            | 275,3                            | 2,1                      | 1                                                                        | 54                   | 231                                    | 289                      | 295                      | 2                     | 1                     |
|            | 244,7                            | 275,3                            | 2,1                      | 1                                                                        | 80                   | 231                                    | 289                      | 295                      | 2                     | 1                     |
|            | 257                              | 303                              | 3                        | 1,5                                                                      | 66                   | 233                                    | 327                      | 334                      | 2,5                   | 1,5                   |
|            | 257                              | 303                              | 3                        | 1,5                                                                      | 94                   | 233                                    | 327                      | 334                      | 2,5                   | 1,5                   |
| 240        | 264,7                            | 295,3                            | 2,1                      | 1                                                                        | 57                   | 251                                    | 309                      | 315                      | 2                     | 1                     |
|            | 264,7                            | 295,3                            | 2,1                      | 1                                                                        | 84                   | 251                                    | 309                      | 315                      | 2                     | 1                     |
|            | 277                              | 323                              | 3                        | 1,5                                                                      | 68                   | 253                                    | 347                      | 354                      | 2,5                   | 1,5                   |
|            | 277                              | 323                              | 3                        | 1,5                                                                      | 98                   | 253                                    | 347                      | 354                      | 2,5                   | 1,5                   |
| 260        | 291,8<br>291,8                   | 328,2<br>328,2                   | 2,1<br>2,1               | 1,1<br>1,1                                                               | 65<br>96             | 271<br>271                             | 349<br>349               | 354<br>354               | 2 2                   | 1<br>1                |
| 280        | 311,8<br>311,8                   | 348,2<br>348,2                   | 2,1<br>2,1               | 1,1<br>1,1                                                               | 67<br>100            | 291<br>291                             | 369<br>369               | 374<br>374               | 2 2                   | 1<br>1                |
| 300        | 337                              | 383                              | 3                        | 1,1                                                                      | 76                   | 313                                    | 407                      | 414                      | 2,5                   | 1                     |
|            | 337                              | 383                              | 3                        | 1,1                                                                      | 112                  | 313                                    | 407                      | 414                      | 2,5                   | 1                     |
| 320        | 357,2                            | 403                              | 3                        | 1,1                                                                      | 79                   | 333                                    | 427                      | 434                      | 2,5                   | 1                     |
|            | 357,2                            | 403                              | 3                        | 1,1                                                                      | 117                  | 333                                    | 427                      | 434                      | 2,5                   | 1                     |
| 340        | 377,2                            | 423                              | 3                        | 1,1                                                                      | 82                   | 353                                    | 447                      | 454                      | 2,5                   | 1                     |
|            | 377,2                            | 423                              | 3                        | 1,1                                                                      | 122                  | 353                                    | 447                      | 454                      | 2,5                   | 1                     |
| 360        | 397                              | 443                              | 3                        | 1,1                                                                      | 84                   | 373                                    | 467                      | 474                      | 2,5                   | 1                     |
|            | 397                              | 443                              | 3                        | 1,1                                                                      | 126                  | 373                                    | 467                      | 474                      | 2,5                   | 1                     |

# Cuscinetti Super-precision SKF di nuova generazione

La SKF ha sviluppato, e continua ad ampliare, una gamma di cuscinetti Super-precision di nuova generazione tecnologicamente più avanzati. I cuscinetti del nuovo assortimento garantiscono una maggiore precisione e un prolungamento della durata di esercizio, rispetto ai design precedenti.

La **Tabella 1** a **pagina 52** e **53** presenta la nuova gamma di cuscinetti Super-precision della SKF.

# Cuscinetti obliqui a sfere Super-precision

# Cuscinetti della serie 718 (SEA)

I cuscinetti della serie 718 (SEA) garantiscono prestazioni eccellenti nelle applicazioni in cui una sezione trasversale ridotta e un elevato grado di rigidezza, nonché la capacità di sopportare le alte velocità e un grado eccezionalmente elevato di precisione costituiscono parametri chiave di progettazione. Sono particolarmente idonei per le applicazioni di macchine utensili, teste di foratura multi-mandrino, robotica, dispositivi di misurazione, mozzi ruota per auto da corsa e altre applicazioni di precisione. La gamma standard è idonea per diametri albero da 10 a 160 mm.

## Cuscinetti delle serie S719 .. B (*HB* .. /S) e S70 .. B (*HX* .. /S)

I cuscinetti schermati per alta velocità delle serie S719 .. B (HB .. /S) e S70 .. B (HX .. /S) sono praticamente in grado di eliminare il problema dei cedimenti prematuri dei cuscinetti causati dalla contaminazione. La gamma standard è idonea per diametri albero da 30 a 120 mm. Questi cuscinetti, che non richiedono alcuna rilubrificazione, sono particolarmente indicati per i macchinari utilizzati per il taglio dei metalli e la lavorazione del legno. Sono disponibili anche nella versione aperta.



# Cuscinetti delle serie 719 .. E (VEB) e 70 .. E (VEX)

Rispetto ai cuscinetti per alta velocità con design B, quelli con design E consentono velocità anche maggiori e possono sopportare carichi più pesanti. Questa vantaggiosa combinazione rende questi cuscinetti una soluzione eccellente per le applicazioni gravose.

I cuscinetti aperti della serie 719 .. E (VEB) sono idonei per diametri albero da 8 a 120 mm, mentre quelli schermati per diametri da 20 a 120 mm.

I cuscinetti aperti della serie 70 .. E (VEX) sono idonei per diametri albero da 6 a 120 mm, mentre quelli schermati per diametri da 10 a 120 mm.

## Cuscinetti della serie 72 .. D (E 200)

I cuscinetti a elevata capacità di carico della serie 72 .. D (*E 200*) offrono soluzioni per le problematiche connesse a molte disposizioni di cuscinetti. Tra le loro caratteristiche principali, la capacità di garantire un elevato grado di rigidezza e quella di sopportare carichi pesanti a velocità relativamente elevate rendono questi cuscinetti vantaggiosi per numerose applicazioni differenti. La gamma ampliata dei prodotti di questa serie comprende ora cuscinetti idonei per diametri albero da 7 a 140 mm. È inoltre disponibile, su richiesta, anche una versione schermata che non richiede alcuna rilubrificazione.





## Cuscinetti in acciaio NitroMax

Nelle applicazioni estremamente gravose, come quelle dei centri di lavorazione e delle fresatrici ad alta velocità, i cuscinetti devono spesso operare in presenza di condizioni di esercizio critiche come velocità elevate, scarsa lubrificazione e ambienti contaminati e corrosivi. Per garantire una maggiore durata operativa e ridurre i costi causati dai tempi di fermo non programmati, la SKF ha sviluppato un acciaio di altissima qualità a elevato contenuto di azoto.

I cuscinetti obliqui a sfere Super-precision della SKF della gamma realizzata in acciaio NitroMax sono dotati, di serie, di elementi volventi in ceramica (nitruro di silicio di qualità).

## Cuscinetti a rulli cilindrici Superprecision

La SKF produce cuscinetti Super-precision a una e due corone di rulli cilindrici. Le caratteristiche distintive di questi tipi sono: sezione trasversale ridotta, elevate capacità di carico e rigidezza e capacità di operare ad alta velocità. Per queste caratteristiche sono particolarmente indicati per i mandrini delle macchine utensili, in cui la disposizione di cuscinetti deve sopportare pesanti carichi radiali, operare ad alta velocità e, al contempo, garantire un elevato grado di rigidezza.

I cuscinetti a una corona di rulli cilindrici vengono prodotti nella serie N 10, con design base e design per alta velocità. I tipi per alta velocità della serie sono disponibili solo con foro conico e per diametri albero da 40 a 80 mm. Rispetto al precedente design, possono sopportare velocità più elevate fino al 30% nelle applicazioni lubrificate a grasso, e fino al 15% in caso di lubrificazione olio-aria.

I cuscinetti a due corone di rulli cilindrici, nella versione standard, vengono prodotti nei design NN e NNU.

## Cuscinetti assiali obliqui a sfere a doppio effetto Super-precision

I cuscinetti obliqui a sfere a doppio effetto, come si comprende dalla loro stessa denominazione, sono stati sviluppati dalla SKF per vincolare assialmente i mandrini delle macchine utensili in ambo le direzioni.

Il nuovo design ottimizzato dei cuscinetti Super-precision della serie BTW prevede un gruppo di due cuscinetti assiali obliqui a una corona di sfere in disposizione ad "O". Questa configurazione consente ai cuscinetti di sopportare i carichi assiali in ambo le direzioni e garantire, al contempo, un elevato grado di rigidezza di sistema. Questi tipi possono sopportare velocità più elevate rispetto a quelli della precedente serie 2344(00). Sono disponibili per diametri albero nella gamma dimensionale da 35 a 200 mm.

La serie BTM per alta velocità di nuova concezione è idonea per velocità più elevate dal 6% al 12%, in base alle dimensioni; la riduzione al minimo della produzione di calore, anche ad alta velocità, consente una maggiore capacità di carico e permette di mantenere un elevato grado di rigidezza di sistema. La gamma di cuscinetti della serie BTM è stata ampliata con articoli idonei per diametri albero da 60 a 180 mm.



# Cuscinetti assiali obliqui a sfere Super-precision per viti a ricircolo di sfere

I cuscinetti assiali obliqui a sfere a semplice effetto delle serie BSA e BSD (BS) sono disponibili per diametri albero nella gamma da 12 a 75 mm. Questi cuscinetti sono caratterizzati da un eccezionale grado di rigidezza e un'elevata capacità di carico assiale.

I cuscinetti assiali obliqui a sfere a doppio effetto della serie BEAS sono stati concepiti per le applicazioni delle macchine utensili in cui lo spazio è limitato e sono richieste procedure di montaggio semplici. Questi cuscinetti sono disponibili per diametri albero nella gamma dimensionale da 8 a 30 mm. I cuscinetti della serie BEAM, idonei per diametri albero da 12 a 60 mm, possono essere imbullonati su un componente correlato.

Le unità cartuccia costituiscono un'altra soluzione in grado di garantire un montaggio rapido e semplice. Le unità della serie FBSA (BSDU e BSQU) comprendono cuscinetti assiali obliqui a sfere a semplice effetto della SKF e sono idonee per diametri albero da 20 a 60 mm.

# Cuscinetti a rulli cilindrici assiali-radiali Super-precision

I cuscinetti a rulli cilindrici assiali-radiali della SKF sono idonei per disposizioni su cui agiscono carichi simultanei (radiali e assiali) e momentanei.

Il design interno, combinato con processi di produzione a tolleranza ristretta, consente di ottenere per questi tipi una precisione migliore della P4.

Questi cuscinetti si utilizzano di norma per supportare le tavole rotanti, i dischi divisori e le teste di fresatura.

| Serie<br>Iimensionale<br>SO | <b>Tipo e design del cuscinetto</b><br>Pubblicazione della SKF <sup>1,2)</sup>                                                                                                                                 | Variante            |                                                                  | Gamma della SKF<br>Cuscinetti SKF della serie |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------|-----------------------------------------------|
| .8                          | Cuscinetti obliqui a sfere: Design di base Cuscinetti obliqui a sfere Super-precision: serie 718 (SEA) (Pubblicazione 06810)                                                                                   | Aperto              | Con sfere in acciaio<br>Ibrido                                   | 718 D (SEA)<br>718 D/HC (SEA /NS)             |
| 9                           | Cuscinetti obliqui a sfere: Design B per alta velocità Cuscinetti obliqui a sfere Super-precision: Design B per alta velocità, tenuta incorporata di serie (Pubblicazione 06939)                               | Aperto<br>Schermato | Con sfere in acciaio<br>Ibrido<br>Con sfere in acciaio<br>Ibrido | 719 B/HC ( <i>HB /NS</i> )                    |
|                             | Cuscinetti obliqui a sfere:<br>Design E per alta velocità<br>Cuscinetti obliqui a sfere Super-precision:<br>Design E per alta velocità<br>(Pubblicazione 10112)                                                | Aperto<br>Schermato | Con sfere in acciaio<br>Ibrido<br>Con sfere in acciaio<br>Ibrido | 719 E/HC ( <i>VEB /NS</i> )                   |
|                             | Cuscinetti obliqui a sfere:<br>Ad alta capacità di carico, design base<br>Cuscinetti obliqui a sfere Super-precision: Ad<br>alta capacità di carico, serie 719 D (SEB) e<br>70 D (EX)<br>(Pubblicazione 10527) | Aperto<br>Schermato | Con sfere in acciaio<br>Ibrido<br>Con sfere in acciaio<br>Ibrido | 719 D/HC (SEB /NS)                            |
| 0                           | Cuscinetti obliqui a sfere: Design B per alta velocità Cuscinetti obliqui a sfere Super-precision: Design B per alta velocità, tenuta incorporata di serie (Pubblicazione 06939)                               | Aperto<br>Schermato | Con sfere in acciaio<br>Ibrido<br>Con sfere in acciaio<br>Ibrido | 70 B/HC ( <i>HX /NS</i> )                     |
|                             | Cuscinetti obliqui a sfere:<br>Design E per alta velocità<br>Cuscinetti obliqui a sfere Super-precision:<br>Design E per alta velocità<br>(Pubblicazione 10112)                                                | Aperto<br>Schermato | Con sfere in acciaio<br>Ibrido<br>Con sfere in acciaio<br>Ibrido | 70 E/HC ( <i>VEX /NS</i> )                    |
|                             | Cuscinetti obliqui a sfere:<br>Ad alta capacità di carico, design base<br>Cuscinetti obliqui a sfere Super-precision:<br>Ad alta capacità di carico, serie 719 D<br>(SEB) e 70 D (EX)<br>(Pubblicazione 10527) | Aperto<br>Schermato | Con sfere in acciaio<br>Ibrido<br>Con sfere in acciaio<br>Ibrido | 70 D/HC ( <i>EX /NS</i> )                     |
| 2                           | Cuscinetti obliqui a sfere:<br>Ad alta capacità di carico, design base<br>Cuscinetti obliqui a sfere Super-precision:<br>Ad alta capacità di carico<br>(Pubblicazione 06981)                                   | Aperto<br>Schermato | Con sfere in acciaio<br>Ibrido<br>Con sfere in acciaio<br>Ibrido | 72 D/HC ( <i>E 200 /NS</i> )                  |
| 9                           | Cuscinetti a due corone di rulli cilindrici:<br>Design NNU                                                                                                                                                     | Aperto              | Con sfere in acciaio                                             | NNU 49 BK                                     |

<sup>1)</sup> Per informazioni in merito, fare riferimento alla pubblicazione della SKF *Cuscinetti di alta precisione* (Pubblicazione 6002).
2) Per ulteriori informazioni sui cuscinetti obliqui a sfere Super-precision realizzati in acciaio NitroMax, fare riferimento alla pubblicazione della SKF *NitroMax*, *per prolungare la durata operativa dei vostri cuscinetti* (Pubblicazione 10126).

| Panoramica dei (             | cuscinetti SKF Super-precision                                                                                                                                                  |                     |                                              |                                                    |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------|----------------------------------------------------|
| Serie<br>Iimensionale ISC    | <b>Tipo e design del cuscinetto )</b> Pubblicazione della SKF <sup>1,2)</sup>                                                                                                   | Variante            |                                              | <b>Gamma della SKF</b><br>Cuscinetti SKF della ser |
| 10                           | Cuscinetti a una corona di rulli cilindrici:<br>Design base                                                                                                                     | Aperto              | Con sfere in acciaio<br>Ibrido               | N 10 KTN<br>N 10 KTN/HC5                           |
|                              | Cuscinetti a una corona di rulli cilindrici:<br>Design per alta velocità<br>Cuscinetti a rulli cilindrici Super-precision:<br>Per alta velocità<br>(Pubblicazione 07016)        | Aperto              | Con sfere in acciaio<br>Ibrido               | N 10 KPHA<br>N 10 KPHA/HC5                         |
| 30                           | Cuscinetti a due corone di rulli cilindrici:<br>Design NN                                                                                                                       | Aperto              | Con sfere in acciaio<br>Ibrido               | NN 30 KTN<br>NN 30 KTN/HC5                         |
| -<br>(Non<br>standardizzato) | Cuscinetti assiali obliqui a sfere:<br>A doppio effetto, design base<br>Cuscinetti assiali obliqui a sfere a doppio<br>effetto Super-precision<br>(Pubblicazione 10097)         | Aperto              | Con sfere in acciaio<br>Ibrido               | BTW<br>BTW/HC                                      |
|                              | Cuscinetti assiali obliqui a sfere: A doppio effetto, design per alta velocità Velocità più elevate grazie al nuovo design dei cuscinetti della serie BTM (Pubblicazione 12119) | Aperto              | Con sfere in acciaio<br>Ibrido               | BTM<br>BTM /HC                                     |
| 02                           | Cuscinetti assiali obliqui a sfere:<br>A semplice effetto<br>Cuscinetti assiali obliqui a sfere Super-<br>precision per viti a ricircolo di sfere<br>(Pubblicazione 06570)      | Aperto<br>Schermato | Con sfere in acciaio<br>Con sfere in acciaio | BSA 2 ( <i>BS 200</i> )<br>BSA 2 ( <i>BS 200</i> ) |
| 03                           | Cuscinetti assiali obliqui a sfere:<br>A semplice effetto<br>Cuscinetti assiali obliqui a sfere Super-<br>precision per viti a ricircolo di sfere<br>(Pubblicazione 06570)      | Aperto<br>Schermato | Con sfere in acciaio<br>Con sfere in acciaio | BSA 3 (BS 3)<br>BSA 3 (BS 3)                       |
| -<br>(Non<br>standardizzato) | Cuscinetti assiali obliqui a sfere:<br>A semplice effetto<br>Cuscinetti assiali obliqui a sfere Super-<br>precision per viti a ricircolo di sfere<br>(Pubblicazione 06570)      | Aperto<br>Schermato | Con sfere in acciaio<br>Con sfere in acciaio | BSD ( <i>BS</i> /)<br>BSD ( <i>BS</i> )            |
|                              | Cuscinetti assiali obliqui a sfere:<br>A doppio effetto                                                                                                                         | Schermato           | Con sfere in acciaio                         | BEAS ( <i>BEAS</i> )<br>BEAM ( <i>BEAM</i> )       |
|                              | Unità cartuccia con cuscinetti assiali<br>obliqui a sfere                                                                                                                       | Schermato           | Con sfere in acciaio                         | FBSA ( <i>BSDU</i> , <i>BSQU</i> )                 |

<sup>2)</sup> Per ulteriori informazioni sui cuscinetti obliqui a sfere Super-precision realizzati in acciaio NitroMax, fare riferimento alla pubblicazione della SKF NitroMax, per prolungare la durata operativa dei vostri cuscinetti (Pubblicazione 10126).

# SKF – the knowledge engineering company

Dall'azienda che 100 anni fa inventò il cuscinetto orientabile a sfere, la SKF si è evoluta e trasformata in una "knowledge engineering company" in grado di operare su cinque piattaforme tecnologiche per creare soluzioni uniche per i propri clienti. Queste piattaforme comprendono naturalmente cuscinetti, sistemi di cuscinetti e dispositivi di tenuta, ma si estendono anche ad altri settori: lubrificanti e sistemi di lubrificazione, elementi critici che influenzano la durata in molte applicazioni; meccatronica, che combina il know-how meccanico a quello elettronico per realizzare sistemi di movimento lineare più efficienti e soluzioni dotate di sensori; ed un'ampia gamma di servizi, dal supporto logistico e di progettazione all'ottimizzazione di sistemi di monitoraggio ed affidabilità.

Benché il settore sia stato ampliato, la SKF mantiene la sua leadership mondiale nell'ambito della progettazione, produzione e commercializzazione dei cuscinetti a sfere, nonché di prodotti complementari come le guarnizioni radiali. Inoltre, il gruppo SKF occupa una posizione sempre più importante nell'ambito dei prodotti per movimento lineare, cuscinetti aerospaziali ad alta precisione, mandrini per macchine utensili e servizi per la manutenzione di impianti.

Il gruppo SKF detiene sia la certificazione ambientale per la gestione ambientale ISO 14001, sia quella per la salute e la sicurezza, OHSAS 18001. Singole divisioni hanno ottenuto l'approvazione per la certificazione di qualità secondo la ISO 9001 e altri requisiti specifici dei clienti.

Gli oltre 100 stabilimenti produttivi nel mondo e le società di vendita in 70 Paesi rendono la SKF un'azienda veramente multinazionale. Inoltre, i nostri distributori e concessionari dislocati in circa 15 000 sedi in tutto il mondo, le relazioni commerciali basate sul commercio online ed il sistema di distribuzione globale garantiscono sempre la vicinanza della SKF ai propri clienti e quindi la capillare fornitura sia di prodotti, sia di servizi. In pratica, le soluzioni della SKF sono disponibili proprio quando e dove lo richiedono i clienti. Il marchio SKF e l'azienda sono più forti che mai, ovunque. In qualità di "knowledge engineering company" siamo in grado di offrire al cliente competenze e risorse intellettuali di conoscenza tecnica di livello mondiale, nonché la prospettiva di supportare il cliente nel raggiungimento del suo successo.



## L'evoluzione della tecnologia by-wire

La SKF vanta esperienza e conoscenze esclusive nella tecnologia by-wire in rapida ascesa (fly-by-wire, drive-by-wire e work-by-wire). La SKF è all'avanguardia nell'applicazione della tecnologia fly-by-wire e lavora in stretta collaborazione con tutte le aziende leader mondiali nel settore aerospaziale. Ad esempio, quasi tutti gli aeromobili Airbus utilizzano i sistemi SKF by-wire per il controllo di volo

La SKF è leader anche nel drive-by-wire in ambito automobilistico e ha collaborato con ingegneri del settore allo sviluppo di due veicoli innovativi che utilizzano componenti meccatronici della SKF per sterzo e frenata. Ulteriori sviluppi nella tecnologia by-wire hanno portato la SKF a produrre un carrello elevatore completamente elettrico che utilizza la meccatronica anziché l'idraulica per tutti i comandi.







### Sfruttare l'energia del vento

Il crescente settore dell'energia eolica rappresenta una fonte ecologica di elettricità. La SKF lavora a stretto contatto con i leader mondiali del settore per sviluppare turbine eoliche efficienti ed affidabili, fornendo un'ampia gamma di cuscinetti e sistemi di monitoraggio delle condizioni altamente specifici, al fine di prolungare la durata delle attrezzature riutilizzate in centrali eoliche situate in ambienti inospitali e spesso isolati.



### Lavorare in ambienti con condizioni estreme

Durante l'inverno, soprattutto nei paesi nordici, temperature sotto lo zero possono provocare il grippaggio dei cuscinetti delle boccole nei veicoli ferrotranviari a causa della scarsa lubrificazione. La SKF ha creato una nuova famiglia di lubrificanti sintetici formulati per mantenere la propria viscosità di lubrificazione anche a temperature estreme. Il know-how della SKF permette a produttori e utenti finali di risolvere le problematiche di prestazione causate dalle alte e basse temperature. I prodotti SKF, ad esempio, vengono utilizzati in vari ambienti come i forni ed i dispositivi di raffreddamento rapido dell'industria alimentare



## Un aspirapolvere più pulito

Il motore elettrico ed i suoi cuscinetti sono il cuore di molti elettrodomestici. La SKF lavora a stretto contatto con i produttori di elettrodomestici per aumentarne le prestazioni e ridurne i costi, il peso, nonché il consumo di energia. Un recente esempio di questa collaborazione è una nuova generazione di aspirapolveri considerevolmente più potenti. Il know-how SKF nel settore della tecnologia per piccoli cuscinetti è utile anche per i produttori di utensili elettrici ed attrezzature da ufficio.



## Un laboratorio di R&S da 350 km/h

Oltre ai noti laboratori di ricerca e sviluppo della SKF in Europa e Stati Uniti, la Formula Uno rappresenta un ambiente unico per lo sviluppo delle tecnologie dei cuscinetti. Da oltre 50 anni, i prodotti, la progettazione ed il know-how della SKF aiutano la Scuderia Ferrari a rimanere al vertice della F1 (una vettura da corsa Ferrari utilizza generalmente più di 150 componenti SKF). L'esperienza acquisita in questo settore viene quindi applicata ai prodotti che forniamo alle case automobilistiche e al mercato dell'aftermarket in tutto il mondo.



### Garantire l'ottimizzazione dell'efficienza delle risorse

Grazie ai Reliability Systems SKF (Sistemi di Affidabilità), la SKF offre una gamma completa di prodotti e servizi per l'ottimizzazione dell'efficienza, da hardware e software per il monitoraggio delle condizioni a strategie di manutenzione, assistenza tecnica e programmi di affidabilità per i macchinari. Per ottimizzare l'efficienza e aumentare la produttività, alcune aziende optano per la Soluzione di Manutenzione Integrata, per la quale la SKF fornisce tutti i servizi in base ad un contratto di prestazione a costo fisso.



## Pianificazione per una crescita sostenibile

Per propria natura, i cuscinetti offrono un contributo positivo alla tutela dell'ambiente consentendo alle macchine di funzionare in modo più efficiente, con minore consumo energetico e con una minore lubrificazione. Migliorando costantemente le prestazioni dei propri prodotti, la SKF rende possibile lo sviluppo di una nuova generazione di prodotti ed attrezzature ad elevata efficienza. Con un occhio al futuro ed al mondo che lasceremo alle generazioni future, e politiche del Gruppo SKF per ambiente, salute e sicurezza, nonché le tecnologie di produzione sono pianificate e implementate per contribuire alla protezione ed alla preservazione delle limitate risorse naturali della Terra. Siamo sempre impegnati verso una crescita sostenibile e rispettosa dell'ambiente.



## The Power of Knowledge Engineering

Basandosi su cinque aree di competenza e su più di 100 anni d'esperienza nelle applicazioni specifiche, la SKF fornisce soluzioni innovative agli 0EM e agli impianti produttivi dei principali settori industriali in tutto il mondo. Queste cinque aree di competenza comprendono cuscinetti e unità, tenute, sistemi di lubrificazione, sistemi di meccatronica (che combinano il know-how meccanico ed elettronico per realizzare sistemi intelligenti) e un'ampia gamma di servizi, dalla modellazione computerizzata 3D all'ottimizzazione dei sistemi per il monitoraggio delle condizioni e l'affidabilità, ai sistemi di gestione delle risorse. Una presenza globale garantisce ai clienti della SKF standard di qualità uniformi e la distribuzione dei prodotti in tutto il mondo.

® SKF e SNFA sono marchi registrati del Gruppo SKF.

™ NitroMax è un marchio del Gruppo SKF.

© Gruppo SKF 2013

La riproduzione, anche parziale, del contenuto di questa pubblicazione è consentita soltanto previa autorizzazione scritta della SKF. Nella stesura è stata dedicata la massima attenzione al fine di assicurare l'accuratezza dei dati, tuttavia non si possono accettare responsabilità per eventuali errori od omissioni, nonché per danni o perdite diretti o indiretti derivanti dall'uso delle informazioni qui contenute.

## PUB BU/P9 10527/4 IT $\cdot$ Maggio 2013

Le informazioni in questa pubblicazione sostituiscono quelle relative ai cuscinetti SKF delle serie 719 .. D e 70 .. D contenute nella pubblicazione SKF *Cuscinetti di alta precisione* (Pubblicazione 6002) e quelle relative ai cuscinetti SNFA nelle serie SEB e EX contenute nel *Catalogo Generale della SNFA*.

Alcune immagini utilizzate sono protette da copyright e concesse su licenza Shutterstock.com

